Michele T Yip-Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1230291/publications.pdf

Version: 2024-02-01

74 papers 3,132 citations

172207 29 h-index 55 g-index

77 all docs

77 docs citations

77 times ranked 4505 citing authors

#	Article	IF	CITATIONS
1	Diminished Immune Surveillance during Histologic Progression of Intraductal Papillary Mucinous Neoplasms Offers a Therapeutic Opportunity for Cancer Interception. Clinical Cancer Research, 2022, 28, 1938-1947.	3.2	11
2	Preoperative Nomogram Predicts Non-home Discharge in Patients Undergoing Pancreatoduodenectomy. Journal of Gastrointestinal Surgery, 2021, 25, 1253-1260.	0.9	2
3	Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic <i>KLF4</i> mutations predominantly in low-grade regions. Gut, 2021, 70, 928-939.	6.1	48
4	Insurance Type and Marital Status Impact Hospital Length of Stay After Pancreatoduodenectomy. Journal of Surgical Research, 2021, 257, 587-592.	0.8	5
5	Lead-Time Trajectory of CA19-9 as an Anchor Marker for Pancreatic Cancer Early Detection. Gastroenterology, 2021, 160, 1373-1383.e6.	0.6	77
6	Novel expression of vascular endothelial growth factor isoforms in the pancreas and pancreatic cystic lesions. Biochimie, 2021, 181, 234-239.	1.3	5
7	Novel Preoperative Patient-centered Surgical Wellness Program Impacts Length of Stay Following Pancreatectomy. Anticancer Research, 2021, 41, 1895-1901.	0.5	2
8	Magnetic resonance imaging-derived fat fraction predicts risk of malignancy in intraductal papillary mucinous neoplasm. Abdominal Radiology, 2021, 46, 4779-4786.	1.0	1
9	Biomarker Risk Score Algorithm and Preoperative Stratification of Patients with Pancreatic Cystic Lesions. Journal of the American College of Surgeons, 2021, 233, 426-434.	0.2	3
10	Performance of candidate urinary biomarkers for pancreatic cancer - Correlation with pancreatic cyst malignant progression?. American Journal of Surgery, 2020, 219, 492-495.	0.9	6
11	Secretin-induced Duodenal Aspirate of Pancreatic Juice (SIDA): Utility of Commercial Genetic Analysis. Anticancer Research, 2020, 40, 4215-4221.	0.5	2
12	Intraductal Papillary Mucinous Neoplasia Originating From the Accessory (Santorini) Duct: A Rare Entity. American Surgeon, 2020, , 000313482095633.	0.4	0
13	A Plasma-Derived Protein-Metabolite Multiplexed Panel for Early-Stage Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 372-379.	3.0	79
14	Multifocal High-Grade Pancreatic Precursor Lesions: A Case Series and Management Recommendations. Journal of Pancreatic Cancer, 2019, 5, 8-11.	1.6	4
15	A multimodality test to guide the management of patients with a pancreatic cyst. Science Translational Medicine, $2019,11,$.	5.8	129
16	Response to Comment on Sims et al. Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care 2019;42:258–264. Diabetes Care, 2019, 42, e85-e86.	4.3	5
17	Clinical criteria for integrated molecular pathology in intraductal papillary mucinous neoplasm: less is more. Hpb, 2019, 21, 574-581.	0.1	3
18	Pancreatic Fluid Interleukin- $1\hat{l}^2$ Complements Prostaglandin E2 and Serum Carbohydrate Antigen 19-9 in Prediction of Intraductal Papillary Mucinous Neoplasm Dysplasia. Pancreas, 2019, 48, 1026-1031.	0.5	12

#	Article	IF	Citations
19	Circulating Leptin and Branched Chain Amino Acidsâ€"Correlation with Intraductal Papillary Mucinous Neoplasm Dysplastic Grade. Journal of Gastrointestinal Surgery, 2019, 23, 966-974.	0.9	11
20	Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care, 2019, 42, 258-264.	4.3	82
21	Circulating Thrombospondin-2 enhances prediction of malignant intraductal papillary mucinous neoplasm. American Journal of Surgery, 2019, 217, 425-428.	0.9	10
22	Pancreatic cyst fluid glucose: rapid, inexpensive, and accurate diagnosis of mucinous pancreatic cysts. Surgery, 2018, 163, 600-605.	1.0	61
23	DNA profile components predict malignant outcomes in select cases of intraductal papillary mucinous neoplasm with negative cytology. Surgery, 2018, 164, 712-718.	1.0	6
24	Abstract 3121: Characterization of immune profiling of pancreatic intraductal papillary mucinous neoplasm using multiplex immunofluorescence and image analysis approaches. , 2018, , .		0
25	Global Protease Activity Profiling Provides Differential Diagnosis of Pancreatic Cysts. Clinical Cancer Research, 2017, 23, 4865-4874.	3.2	37
26	Pancreatic Cyst Fluid Vascular Endothelial Growth Factor A and Carcinoembryonic Antigen: A Highly Accurate Test for the Diagnosis of Serous Cystic Neoplasm. Journal of the American College of Surgeons, 2017, 225, 93-100.	0.2	31
27	Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10202-10207.	3.3	438
28	Prostaglandin E2: A Pancreatic Fluid Biomarker of Intraductal Papillary Mucinous Neoplasm Dysplasia. Journal of the American College of Surgeons, 2017, 225, 481-487.	0.2	24
29	597 Molecular Markers Help Define Cyst Type in the Pancreas: An International, Multicenter Study of Over 300 Cysts. Gastroenterology, 2016, 150, S121.	0.6	O
30	Factors influencing the cytotoxicity of \hat{l}_{\pm} -methylene- \hat{l}_{3} -hydroxy esters against pancreatic cancer. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4270-4273.	1.0	3
31	A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts. Gastroenterology, 2015, 149, 1501-1510.	0.6	376
32	Targeted nuclear factor-kappaB suppression enhances gemcitabine response in human pancreatic tumor cell line murine xenografts. Surgery, 2015, 158, 881-889.	1.0	9
33	Alcohol Activates the Hedgehog Pathway and Induces Related Procarcinogenic Processes in the Alcoholâ€Preferring Rat Model of Hepatocarcinogenesis. Alcoholism: Clinical and Experimental Research, 2014, 38, 787-800.	1.4	28
34	Vascular Endothelial Growth Factor. Journal of the American College of Surgeons, 2014, 219, 591-592.	0.2	0
35	Vascular Endothelial Growth Factor, a Novel and Highly Accurate Pancreatic Fluid Biomarker for Serous Pancreatic Cysts. Journal of the American College of Surgeons, 2014, 218, 608-617.	0.2	72
36	Dimethylaminoparthenolide and gemcitabine: a survival study using a genetically engineered mouse model of pancreatic cancer. BMC Cancer, 2013, 13, 194.	1.1	35

#	Article	IF	Citations
37	The first synthesis of a borylated \hat{l} ±-methylene- \hat{l} 3-butyrolactone. Future Medicinal Chemistry, 2013, 5, 633-639.	1.1	3
38	Synthetic \hat{l}_{\pm} -(aminomethyl)- \hat{l}^3 -butyrolactones and their anti-pancreatic cancer activities. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6911-6914.	1.0	19
39	Efficacy of Dimethylaminoparthenolide and Sulindac in Combination With Gemcitabine in a Genetically Engineered Mouse Model of Pancreatic Cancer. Pancreas, 2013, 42, 160-167.	0.5	23
40	The Proteome of Normal Pancreatic Juice. Pancreas, 2012, 41, 186-194.	0.5	36
41	Dimethylamino Parthenolide Enhances the Inhibitory Effects of Gemcitabine in Human Pancreatic Cancer Cells. Journal of Gastrointestinal Surgery, 2012, 16, 1333-1340.	0.9	26
42	Transforming Growth Factor α Levels in Pancreatic Fluid. Pancreas, 2011, 40, 260-264.	0.5	4
43	Alcohol Induces Liver Neoplasia in a Novel Alcoholâ€Preferring Rat Model. Alcoholism: Clinical and Experimental Research, 2011, 35, 2216-2225.	1.4	20
44	Role of 14-3-3 $\ddot{l}f$ in poor prognosis and in radiation and drug resistance of human pancreatic cancers. BMC Cancer, 2010, 10, 598.	1.1	39
45	Targeting mitogen-activated protein kinase kinase with the inhibitor PD0325901 decreases hepatocellular carcinoma growth in vitro and in mouse model systems. Hepatology, 2010, 51, 1218-1225.	3.6	26
46	Tailored $\hat{l}\pm$ -methylene- \hat{l}^3 -butyrolactones and their effects on growth suppression in pancreatic carcinoma cells. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6620-6623.	1.0	25
47	Resistance to Mitogen-Activated Protein Kinase Kinase (MEK) Inhibitors Correlates with Up-Regulation of the MEK/Extracellular Signal-Regulated Kinase Pathway in Hepatocellular Carcinoma Cells. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 1063-1070.	1.3	34
48	Sulindac Prevents Carcinogen-Induced Intrahepatic Cholangiocarcinoma Formation In Vivo. Journal of Surgical Research, 2009, 157, e87-e95.	0.8	7
49	Ethanol-TGFα-MEK Signaling Promotes Growth of Human Hepatocellular Carcinoma. Journal of Surgical Research, 2009, 154, 187-195.	0.8	14
50	Natural and synthetic \hat{l}_{\pm} , \hat{l}^2 -unsaturated carbonyls for NF- \hat{l}^2 B inhibition. Future Medicinal Chemistry, 2009, 1, 179-200.	1.1	24
51	Targeting MEK is Effective Chemoprevention of Hepatocellular Carcinoma in TGF-α-Transgenic Mice. Journal of Gastrointestinal Surgery, 2008, 12, 30-37.	0.9	23
52	PGE2 in Pancreatic Cyst Fluid Helps Differentiate IPMN from MCN and Predict IPMN Dysplasia. Journal of Gastrointestinal Surgery, 2008, 12, 243-249.	0.9	45
53	Pancreatic Cancer Cell Genetics and Signaling Response to Treatment Correlate with Efficacy of Gemcitabine-Based Molecular Targeting Strategies. Journal of Gastrointestinal Surgery, 2008, 12, 288-296.	0.9	24
54	The Effect of Doxorubicin on MEK-ERK Signaling Predicts Its Efficacy in HCC. Journal of Surgical Research, 2008, 150, 219-226.	0.8	38

#	Article	IF	Citations
55	The Role of Nuclear Factor κB in Pancreatic Cancer and the Clinical Applications of Targeted Therapy. Pancreas, 2008, 36, 225-235.	0.5	84
56	Effect of Celecoxib and the Novel Anti-Cancer Agent, Dimethylamino-Parthenolide, in a Developmental Model of Pancreatic Cancer. Pancreas, 2008, 37, e45-e53.	0.5	26
57	Suppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin D1 inhibition in vivo. Molecular Cancer Therapeutics, 2007, 6, 1736-1744.	1.9	39
58	THE PROTEOME OF NORMAL PANCREATIC JUICE. Pancreas, 2007, 35, 437.	0.5	0
59	Effect of Celecoxib and Novel Agent LC-1 in a Hamster Model of Lung Cancer. Journal of Surgical Research, 2007, 143, 169-176.	0.8	7
60	The Effects of a Novel MEK Inhibitor PD184161 on MEK-ERK Signaling and Growth in Human Liver Cancer. Neoplasia, 2006, 8, 1-8.	2.3	64
61	Cyclooxygenase-2 Expression in Hamster and Human Pancreatic Neoplasia. Neoplasia, 2006, 8, 437-445.	2.3	29
62	Restoring chemotherapy and hormone therapy sensitivity by parthenolide in a xenograft hormone refractory prostate cancer model. Prostate, 2006, 66, 1498-1511.	1.2	44
63	Sulindac decreases N-nitrosobis(2-oxypropyl)amine-induced precancerous hepatocellular lesion formation in hamsters. Journal of the American College of Surgeons, 2006, 203, S85-S86.	0.2	O
64	Parthenolide Cooperates with NS398 to Inhibit Growth of Human Hepatocellular Carcinoma Cells through Effects on Apoptosis and G0-G1 Cell Cycle Arrest. Molecular Cancer Research, 2006, 4, 387-399.	1.5	44
65	Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-κB pathway in pancreatic carcinoma cells. Molecular Cancer Therapeutics, 2005, 4, 587-594.	1.9	108
66	Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinomal 1No competing interests declared Journal of the American College of Surgeons, 2004, 198, 410-421.	0.2	94
67	Inhibition of the Phosphatidylinositol 3′–Kinase Signaling Pathway Increases the Responsiveness of Pancreatic Carcinoma Cells to Sulindac,. Journal of Gastrointestinal Surgery, 2003, 7, 354-363.	0.9	22
68	Novel combination of a COX-2 inhibitor, NS398, and MEK inhibitor, U0126, in human hepatocellular carcinoma provides synergistic increase in apoptosis. Gastroenterology, 2003, 124, A793-A794.	0.6	1
69	MEK Inhibition of Pancreatic Carcinoma Cells by U0126 and Its Effect in Combination with Sulindac. Pancreas, 2003, 27, 337-344.	0.5	31
70	Cyclo-oxygenase-2 expression in primary cancers of the lung and bladder compared to normal adjacent tissue. Cancer Detection and Prevention, 2002, 26, 238-244.	2.1	16
71	Pancreatic Tumor Cells with Mutant K-ras Suppress ERK Activity by MEK-Dependent Induction of MAP Kinase Phosphatase-2. Biochemical and Biophysical Research Communications, 2001, 280, 992-997.	1.0	82
72	Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochemical Journal, 2000, 351, 151.	1.7	53

#	Article	IF	CITATIONS
73	Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochemical Journal, 2000, 351, 151-159.	1.7	83
74	Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis, 2000, 21, 139-146.	1.3	258