Christopher B Durr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1230239/publications.pdf

Version: 2024-02-01

567281 552781 43 777 15 26 h-index g-index citations papers 46 46 46 882 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unusually Efficient Pyridine Photodissociation from Ru(II) Complexes with Sterically Bulky Bidentate Ancillary Ligands. Journal of Physical Chemistry A, 2014, 118, 10603-10610.	2.5	92
2	Indium Catalysts for Low-Pressure CO ₂ /Epoxide Ring-Opening Copolymerization: Evidence for a Mononuclear Mechanism?. Journal of the American Chemical Society, 2018, 140, 6893-6903.	13.7	68
3	Groups 1, 2 and Zn(II) Heterodinuclear Catalysts for Epoxide/CO ₂ Ring-Opening Copolymerization. Inorganic Chemistry, 2018, 57, 15575-15583.	4.0	56
4	[MoO(S ₂) ₂ L] ^{1–} (L = picolinate or pyrimidine-2-carboxylate) Complexes as MoS _{<i>x</i>} -Inspired Electrocatalysts for Hydrogen Production in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 13726-13731.	13.7	41
5	Heterodinuclear complexes featuring Zn(<scp>ii</scp>) and M = Al(<scp>iii</scp>), Ga(<scp>iii</scp>) or ln(<scp>iii</scp>) for cyclohexene oxide and CO ₂ copolymerisation. Dalton Transactions, 2020, 49, 223-231.	3.3	41
6	Selective Photoinduced Ligand Exchange in a New Tris–Heteroleptic Ru(II) Complex. Journal of Physical Chemistry A, 2013, 117, 13885-13892.	2.5	39
7	Ethyl 2-hydroxy-2-methylpropanoate derivatives of magnesium and zinc. The effect of chelation on the homo- and copolymerization of lactide and ε-caprolactone. Dalton Transactions, 2014, 43, 2781-2788.	3.3	31
8	<i>Ortho</i> -vanillin derived Al(<scp>iii</scp>) and Co(<scp>iii</scp>) catalyst systems for switchable catalysis using Îμ-decalactone, phthalic anhydride and cyclohexene oxide. Catalysis Science and Technology, 2021, 11, 1737-1745.	4.1	31
9	Single-site bismuth alkoxide catalysts for the ring-opening polymerization of lactide. Dalton Transactions, 2013, 42, 11234.	3.3	28
10	Heterodinuclear Zn(II), Mg(II) or Co(III) with Na(I) Catalysts for Carbon Dioxide and Cyclohexene Oxide Ring Opening Copolymerizations. Chemistry - A European Journal, 2021, 27, 12224-12231.	3.3	28
11	New Coordination Modes for Modified Schiff Base Ti(IV) Complexes and Their Control over Lactone Ring-Opening Polymerization Activity. Inorganic Chemistry, 2018, 57, 14240-14248.	4.0	27
12	Heterodinuclear Mg(II)M(II) (M=Cr, Mn, Fe, Co, Ni, Cu and Zn) Complexes for the Ring Opening Copolymerization of Carbon Dioxide/Epoxide and Anhydride/Epoxide. Chemistry - A European Journal, 2022, 28, .	3.3	26
13	Indium phosphasalen catalysts showing high isoselectivity and activity in racemic lactide and lactone ring opening polymerizations. Catalysis Science and Technology, 2020, 10, 7226-7239.	4.1	24
14	BDIâ^—MgX(L) where X = Bu and O Bu and L = THF, py and DMAP. The rates of kinetic exchange of L where BDIâ^—= $CH\{C(Bu)N-2,6-Pr2C6H3\}2$. Polyhedron, 2016, 103, 235-240.	2.2	20
15	Heterodinuclear catalysts Zn(<scp>ii</scp>)/M and Mg(<scp>ii</scp>)/M, where M = Na(<scp>i</scp>), Ca(<scp>ii</scp>) or Cd(<scp>ii</scp>), for phthalic anhydride/cyclohexene oxide ring opening copolymerisation. Catalysis Science and Technology, 2021, 11, 3109-3118.	4.1	16
16	Mo ₂ Paddlewheel Complexes Functionalized with a Single MLCT, S ₁ Infrared-Active Carboxylate Reporter Ligand: Preparation and Studies of Ground and Photoexcited States. Inorganic Chemistry, 2014, 53, 637-644.	4.0	15
17	Metal–Metal Quadruple Bonds Supported by 5-Ethynylthiophene-2-carboxylato Ligands: Preparation, Molecular and Electronic Structures, Photoexcited State Dynamics, and Application as Molecular Synthons. Journal of the American Chemical Society, 2013, 135, 8254-8259.	13.7	14
18	Electronic and Spectroscopic Properties of Avobenzone Derivatives Attached to Mo ₂ Quadruple Bonds: Suppression of the Photochemical Enol-to-Keto Transformation. Journal of the American Chemical Society, 2015, 137, 5155-5162.	13.7	14

#	Article	IF	CITATIONS
19	1,1,3,3-Tetramethylguanidine solvated lanthanide aryloxides: pre-catalysts for intramolecular hydroalkoxylation. Dalton Transactions, 2009, , 10601.	3.3	13
20	MM quadruple bonds supported by cyanoacrylate ligands. Extending photon harvesting into the near infrared and studies of the MLCT states. Chemical Science, 2013, 4, 2105.	7.4	13
21	Photophysical Properties of <i>cis</i> -Mo ₂ Quadruply Bonded Complexes and Observation of Photoinduced Electron Transfer to Titanium Dioxide. Journal of the American Chemical Society, 2014, 136, 11428-11435.	13.7	12
22	Molybdenum–molybdenum quadruple bonds supported by 9,10-anthraquinone carboxylate ligands. Molecular, electronic, ground state and unusual photoexcited state properties. Chemical Science, 2014, 5, 2657.	7.4	11
23	Electronic Structure and Excited-State Dynamics of the Molecular Triads: <i>trans</i> -M ₂ (T ^{<i>i>i</i>} PB) ₂ [O ₂ CC ₆ H _{5 Where M = Mo or W, and T^{<i>i</i>/i>}PB = 2,4,6-triisopropylbenzoate. Journal of the American Chemical Society, 2012, 134, 20820-20826.}	-Î-<:	sup>6
24	TMPZnN(SiMe3)2, [TMPZn(ν-O Pr)]2 and TMPZn[OCMe2C(O)OEt]. Their role in the ring-opening of rac-lactide and \hat{l}_{L} -caprolactone where TMPÂ=Â1,5,9-trimesityldipyrromethene. Journal of Organometallic Chemistry, 2016, 812, 56-65.	1.8	10
25	On the Molecular Structure and Bonding in a Lithium Bismuth Porphyrin Complex: LiBi(TPP) ₂ . Angewandte Chemie - International Edition, 2014, 53, 1594-1597.	13.8	9
26	A Family of 1,1,3,3-Tetraalkylguanidine (H-TAG) Solvated Zinc Aryloxide Precatalysts for the Ring-Opening Polymerization ofrac-Lactide. European Journal of Inorganic Chemistry, 2010, 2010, 1424-1430.	2.0	7
27	Concerning the Ground State and S ₁ and T ₁ Photoexcited States of the Homoleptic Quadruply Bonded Complexes Mo ₂ (O ₂ CC ₆ H ₄ - <i>p</i> >/i>-X) ₄ , where X = Câ‰;Câ€"H or Câ‰;N. Journal of Physical Chemistry A. 2013, 117, 13893-13898.	2.5	7
28	Modulating the M2δ-to-ligand charge transfer transition by the use of diarylboron substituents. Dalton Transactions, 2013, 42, 14491.	3.3	6
29	Isomerization initiated by photoinduced ligand dissociation in Ru(<scp>ii</scp>) complexes with the ligand 2-p-tolylpyridinecarboxaldimine. Dalton Transactions, 2014, 43, 17828-17837.	3.3	6
30	Steric and Electronic Factors Associated with the Photoinduced Ligand Exchange of Bidentate Ligands Coordinated to Ru(<scp>II</scp>). Photochemistry and Photobiology, 2015, 91, 616-623.	2.5	6
31	Dimeric FeFe-hydrogenase mimics bearing carboxylic acids: Synthesis and electrochemical investigation. Polyhedron, 2016, 103, 21-27.	2.2	6
32	TMPMg Bu(L), where LÂ= THF, 2-MeTHF, pyridine and dimethylaminopyridine and TMPÂ= 1,5,9-trimesityldipyrromethene: Reaction with lactide and $\hat{l}\mu$ -caprolactone. Journal of Organometallic Chemistry, 2017, 842, 74-81.	1.8	6
33	Titanium ONN-(phenolate) Alkoxide Complexes: Unique Reaction Kinetics for Ring-Opening Polymerization of Cyclic Esters. Inorganic Chemistry, 2021, 60, 19336-19344.	4.0	6
34	Coordination of N,N-Chelated Re(CO)3Cl Units Across a Mo2 Quadruple Bond: Synthesis, Characterization, and Photophysical Properties of a Re–Mo2–Re Triad and Its Component Pieces. Journal of Physical Chemistry A, 2013, 117, 5997-6006.	2.5	5
35	4-Nitrophenyl- and 4′-nitro-1,1′-biphenyl-4-carboxylates attached to Mo2 quadruple bonds: ground versus excited state M2δ–ligand conjugation. Dalton Transactions, 2014, 43, 11397.	3.3	5
36	MM quadruply bonded complexes supported by vinylbenzoate ligands: synthesis, characterization, photophysical properties and application as synthons. Chemical Science, 2015, 6, 1780-1791.	7.4	5

#	Article	IF	CITATIONS
37	Bismuth–lithium bonding in the ion pairs: LiBiL ₂ , where L = a porphyrin or a salen ligand. Dalton Transactions, 2015, 44, 8205-8213.	3.3	5
38	Synthesis, Structure, and Photophysical Properties of Mo ₂ (NN) ₄ and Mo ₂ (NN) ₂ (T ^{<i>i</i>} PB) ₂ , Where NN = <i>NN</i> >Ni>nPB = 2,4,6-Triisopropylbenzoate. Inorganic Chemistry, 2016, 55, 5836-5844.	4.0	5
39	Molecular and electronic structure of MM quadruply bonded complexes containing O2CC6H4N(Ph)2 supporting ligands. Polyhedron, 2013, 64, 339-345.	2.2	4
40	Oxalate Bridged MM Quadruply Bonded Oligomers: Considerations of Electronic Structure and Synthetic Strategies. Journal of Cluster Science, 2012, 23, 767-780.	3.3	2
41	Investigating the Ring-Opening Polymerization Activity of Niobium and Tantalum Ethoxides Supported by Phenoxyimine Ligands. ACS Omega, 2022, 7, 23995-24003.	3.5	2
42	Molecular ordering by halide–halide interactions in dimolybdenum p-halobenzoates. Inorganica Chimica Acta, 2015, 424, 300-307.	2.4	1
43	Berichtigung: On the Molecular Structure and Bonding in a Lithium Bismuth Porphyrin Complex: LiBi(TPP)2. Angewandte Chemie, 2015, 127, 1718-1718.	2.0	0