Rhonda Bassel-Duby

List of Publications by Citations

Source: https://exaly.com/author-pdf/1229631/rhonda-bassel-duby-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

84 7,835 40 88 g-index

88 9,683 14 6.13 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
84	Heart repair by reprogramming non-myocytes with cardiac transcription factors. <i>Nature</i> , 2012 , 485, 599	9- 6 04 ₄	858
83	Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. <i>Science</i> , 2016 , 351, 400-3	33.3	657
82	Signaling pathways in skeletal muscle remodeling. <i>Annual Review of Biochemistry</i> , 2006 , 75, 19-37	29.1	580
81	Hippo pathway effector Yap promotes cardiac regeneration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 13839-44	11.5	575
80	Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. <i>Science</i> , 2014 , 345, 1184-1188	33.3	493
79	A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. <i>Science</i> , 2016 , 351, 271-5	33.3	439
78	Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. <i>Science</i> , 2018 , 362, 86-91	33.3	283
77	Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. <i>Circulation Research</i> , 2000 , 87, E61-8	15.7	261
76	Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. <i>Nature</i> , 2016 , 539, 433-436	50.4	209
75	Control of muscle formation by the fusogenic micropeptide myomixer. <i>Science</i> , 2017 , 356, 323-327	33.3	178
74	Therapeutic approaches for cardiac regeneration and repair. <i>Nature Reviews Cardiology</i> , 2018 , 15, 585-	60:0 4.8	161
73	CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. <i>Science Advances</i> , 2017 , 3, e1602814	14.3	142
72	Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. <i>Science Advances</i> , 2018 , 4, eaap9004	14.3	138
71	Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	129
70	CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. <i>Science Advances</i> , 2019 , 5, eaav4324	14.3	120
69	Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 11864-9	11.5	119
68	Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation. <i>Circulation</i> , 2001 , 103, 2731-8	16.7	116

(2016-2016)

67	A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 338-43	11.5	115
66	Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. <i>Science Signaling</i> , 2016 , 9, ra119	8.8	110
65	Myomaker is essential for muscle regeneration. <i>Genes and Development</i> , 2014 , 28, 1641-6	12.6	106
64	Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10196-201	11.5	106
63	Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. <i>Development (Cambridge)</i> , 2014 , 141, 4267-78	6.6	103
62	A Twist2-dependent progenitor cell contributes to adult skeletal muscle. <i>Nature Cell Biology</i> , 2017 , 19, 202-213	23.4	84
61	Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes. <i>Molecular and Cellular Biology</i> , 1994 , 14, 4596-605	4.8	83
60	Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. <i>Stem Cell Reports</i> , 2017 , 8, 548-560	8	78
59	CRISPR Correction of Duchenne Muscular Dystrophy. <i>Annual Review of Medicine</i> , 2019 , 70, 239-255	17.4	78
58	A 40-kilodalton protein binds specifically to an upstream sequence element essential for muscle-specific transcription of the human myoglobin promoter. <i>Molecular and Cellular Biology</i> , 1992 , 12, 5024-32	4.8	71
57	MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid Exidation. Cell Reports, 2018, 23, 3701	-3769	70
56	Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. <i>Science Advances</i> , 2020 , 6, eaay6812	14.3	64
55	hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E30) 2 6 -5	63
54	Role of calcineurin in striated muscle: development, adaptation, and disease. <i>Biochemical and Biophysical Research Communications</i> , 2003 , 311, 1133-41	3.4	61
53	MED13-dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. <i>EMBO Molecular Medicine</i> , 2014 , 6, 1610-21	12	59
52	ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. <i>Genes and Development</i> , 2017 , 31, 1770-1783	12.6	58
51	Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression. <i>Circulation Research</i> , 2015 , 117, 424-36	15.7	57
50	Structure-function analysis of myomaker domains required for myoblast fusion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2116-21	11.5	52

49	Functional correction of dystrophin actin binding domain mutations by genome editing. <i>JCI Insight</i> , 2017 , 2,	9.9	51
48	Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 18455-18465	11.5	46
47	Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. <i>Cell Stem Cell</i> , 2019 , 25, 69-86.e5	18	45
46	The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. <i>ELife</i> , 2018 , 7,	8.9	44
45	Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1649-1654	11.5	41
44	Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing. <i>Developmental Cell</i> , 2020 , 53, 102-116.e8	10.2	37
43	Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	37
42	Collaborative interactions between MEF-2 and Sp1 in muscle-specific gene regulation. <i>Journal of Cellular Biochemistry</i> , 1998 , 70, 366-375	4.7	36
41	Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11950-11955.	5 ^{11.5}	35
40	Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3864-3869	11.5	33
39	Sequence elements required for transcriptional activity of the human myoglobin promoter in intact myocardium. <i>Circulation Research</i> , 1993 , 73, 360-6	15.7	32
38	A 40-kilodalton protein binds specifically to an upstream sequence element essential for muscle-specific transcription of the human myoglobin promoter. <i>Molecular and Cellular Biology</i> , 1992 , 12, 5024-5032	4.8	31
37	Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes. <i>Molecular and Cellular Biology</i> , 1994 , 14, 4596-4605	4.8	31
36	Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. <i>Science Advances</i> , 2021 , 7,	14.3	29
35	KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. <i>ELife</i> , 2017 , 6,	8.9	28
34	Myocardin-related transcription factors are required for cardiac development and function. <i>Developmental Biology</i> , 2015 , 406, 109-16	3.1	27
33	Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution. <i>Cell Reports</i> , 2020 , 33, 108472	10.6	25
32	Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. <i>Molecular Therapy</i> , 2020 , 28, 2044-2055	11.7	25

(2021-2020)

31	Correction of muscular dystrophies by CRISPR gene editing. <i>Journal of Clinical Investigation</i> , 2020 , 130, 2766-2776	15.9	25
30	A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism. <i>Genes and Development</i> , 2016 , 30, 434-46	12.6	23
29	Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29691-29701	11.5	22
28	Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4494-503	11.5	21
27	In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. <i>Nature Communications</i> , 2019 , 10, 4537	17.4	20
26	NURR1 activation in skeletal muscle controls systemic energy homeostasis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 11299-11308	11.5	20
25	Myocardin-related transcription factors are required for skeletal muscle development. <i>Development (Cambridge)</i> , 2016 , 143, 2853-61	6.6	19
24	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. <i>Physiological Reviews</i> , 2018 , 98, 1205-1240	47.9	18
23	CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart. <i>Circulation Research</i> , 2020 , 126, 6-24	15.7	18
22	The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. <i>Nature Cell Biology</i> , 2021 , 23, 467-475	23.4	16
21	High-Phosphate Diet Induces Exercise Intolerance and Impairs Fatty Acid Metabolism in Mice. <i>Circulation</i> , 2019 , 139, 1422-1434	16.7	16
20	Cullin-3-RING ubiquitin ligase activity is required for striated muscle function in mice. <i>Journal of Biological Chemistry</i> , 2018 , 293, 8802-8811	5.4	14
19	Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. <i>Genes and Development</i> , 2019 , 33, 626-640	12.6	13
18	Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. <i>Nature Communications</i> , 2021 , 12, 5270	17.4	11
17	Inhibitor-Resistant Tissue-Type Plasminogen Activator: An Improved Thrombolytic Agent In Vitro. <i>Thrombosis and Haemostasis</i> , 1994 , 71, 124-128	7	9
16	Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	8
15	Identification of a multipotent Twist2-expressing cell population in the adult heart. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E8430-E8439	11.5	7
14	Direct reprogramming as a route to cardiac repair. Seminars in Cell and Developmental Biology, 2021	7.5	7

13	Control of Muscle Metabolism by the Mediator Complex. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2018 , 8,	5.4	4
12	A myocardin-adjacent lncRNA balances SRF-dependent gene transcription in the heart. <i>Genes and Development</i> , 2021 , 35, 835-840	12.6	4
11	A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. <i>Molecular Therapy - Methods and Clinical Development</i> , 2021 , 22, 122-132	6.4	4
10	The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. <i>Nature Communications</i> , 2021 , 12, 690	17.4	4
9	RBPMS is an RNA-binding protein that mediates cardiomyocyte binucleation and cardiovascular development <i>Developmental Cell</i> , 2022 , 57, 959-973.e7	10.2	4
8	Sema3a-Nrp1 Signaling Mediates Fast-Twitch Myofiber Specificity of Tw2 Cells. <i>Developmental Cell</i> , 2019 , 51, 89-98.e4	10.2	3
7	The cardiac-enriched microprotein mitolamban regulates mitochondrial respiratory complex assembly and function in mice <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	2
6	Toward CRISPR Therapies for Cardiomyopathies. <i>Circulation</i> , 2021 , 144, 1525-1527	16.7	2
5	Prednisolone rescues Duchenne Muscular Dystrophy phenotypes in human pluripotent stem cells-derived skeletal muscle in vitro		2
4	Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy. <i>Circulation Research</i> , 2021 , 129, 602-616	15.7	2
3	Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice <i>Molecular Therapy - Nucleic Acids</i> , 2022 , 28, 154-167	10.7	2
2	Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
1	CRISPR/Cas correction of muscular dystrophies. <i>Experimental Cell Research</i> , 2021 , 408, 112844	4.2	1