
Rhonda Bassel-Duby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1229631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 2012, 485, 599-604.	27.8	1,044
2	Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016, 351, 400-403.	12.6	804
3	Hippo pathway effector Yap promotes cardiac regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13839-13844.	7.1	735
4	Signaling Pathways in Skeletal Muscle Remodeling. Annual Review of Biochemistry, 2006, 75, 19-37.	11.1	685
5	A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351, 271-275.	12.6	634
6	Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science, 2014, 345, 1184-1188.	12.6	595
7	Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 2018, 362, 86-91.	12.6	405
8	Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature, 2016, 539, 433-436.	27.8	301
9	Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017, 356, 323-327.	12.6	301
10	Independent Signals Control Expression of the Calcineurin Inhibitory Proteins MCIP1 and MCIP2 in Striated Muscles. Circulation Research, 2000, 87, E61-8.	4.5	292
11	Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 2018, 15, 585-600.	13.7	268
12	Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Science Advances, 2018, 4, eaap9004.	10.3	200
13	CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Science Advances, 2019, 5, eaav4324.	10.3	190
14	CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science Advances, 2017, 3, e1602814.	10.3	189
15	Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Science Translational Medicine, 2017, 9, .	12.4	188
16	Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Science Signaling, 2016, 9, ra119.	3.6	168
17	Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11864-11869.	7.1	158
18	A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 338-343.	7.1	153

RHONDA BASSEL-DUBY

#	Article	IF	CITATIONS
19	Myomaker is essential for muscle regeneration. Genes and Development, 2014, 28, 1641-1646.	5.9	141
20	Cardiac-Specific LIM Protein FHL2 Modifies the Hypertrophic Response to β-Adrenergic Stimulation. Circulation, 2001, 103, 2731-2738.	1.6	136
21	CRISPR Correction of Duchenne Muscular Dystrophy. Annual Review of Medicine, 2019, 70, 239-255.	12.2	130
22	Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Science Advances, 2021, 7, .	10.3	127
23	Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10196-10201.	7.1	122
24	Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors. Development (Cambridge), 2014, 141, 4267-4278.	2.5	122
25	A Twist2-dependent progenitor cell contributes to adult skeletal muscle. Nature Cell Biology, 2017, 19, 202-213.	10.3	118
26	MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation. Cell Reports, 2018, 23, 3701-3709.	6.4	118
27	Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Science Advances, 2020, 6, eaay6812.	10.3	114
28	Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity. Stem Cell Reports, 2017, 8, 548-560.	4.8	108
29	Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution. Cell Reports, 2020, 33, 108472.	6.4	99
30	Dynamic Transcriptional Responses to Injury of Regenerative and Non-regenerative Cardiomyocytes Revealed by Single-Nucleus RNA Sequencing. Developmental Cell, 2020, 53, 102-116.e8.	7.0	95
31	Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes Molecular and Cellular Biology, 1994, 14, 4596-4605.	2.3	94
32	Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18455-18465.	7.1	94
33	hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3020-9.	7.1	90
34	Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29691-29701.	7.1	90
35	ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression. Genes and Development, 2017, 31, 1770-1783.	5.9	87
36	The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. ELife, 2018, 7, .	6.0	86

#	Article	IF	CITATIONS
37	Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight, 2017, 2, .	5.0	80
38	A 40-kilodalton protein binds specifically to an upstream sequence element essential for muscle-specific transcription of the human myoglobin promoter Molecular and Cellular Biology, 1992, 12, 5024-5032.	2.3	77
39	<scp>MED</scp> 13â€dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. EMBO Molecular Medicine, 2014, 6, 1610-1621.	6.9	77
40	Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated <i>MuRF1</i> Expression. Circulation Research, 2015, 117, 424-436.	4.5	76
41	Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell, 2019, 25, 69-86.e5.	11.1	72
42	Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3864-3869.	7.1	71
43	Role of calcineurin in striated muscle: development, adaptation, and disease. Biochemical and Biophysical Research Communications, 2003, 311, 1133-1141.	2.1	66
44	Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development (Cambridge), 2018, 145, .	2.5	66
45	Structure–function analysis of myomaker domains required for myoblast fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2116-2121.	7.1	65
46	Correction of muscular dystrophies by CRISPR gene editing. Journal of Clinical Investigation, 2020, 130, 2766-2776.	8.2	60
47	Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nature Communications, 2021, 12, 5270.	12.8	59
48	Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1649-1654.	7.1	53
49	Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. Molecular Therapy, 2020, 28, 2044-2055.	8.2	51
50	Requirement of the fusogenic micropeptide myomixer for muscle formation in zebrafish. Proceedings of the United States of America, 2017, 114, 11950-11955.	7.1	48
51	The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. Nature Cell Biology, 2021, 23, 467-475.	10.3	45
52	Myocardin-related transcription factors are required for cardiac development and function. Developmental Biology, 2015, 406, 109-116.	2.0	44
53	Collaborative interactions between MEF-2 and Sp1 in muscle-specific gene regulation. Journal of Cellular Biochemistry, 1998, 70, 366-375.	2.6	42
54	KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. ELife, 2017, 6, .	6.0	40

Rhonda Bassel-Duby

#	Article	IF	CITATIONS
55	RBPMS is an RNA-binding protein that mediates cardiomyocyte binucleation and cardiovascular development. Developmental Cell, 2022, 57, 959-973.e7.	7.0	40
56	Myocyte Nuclear Factor, a Novel Winged-Helix Transcription Factor under both Developmental and Neural Regulation in Striated Myocytes. Molecular and Cellular Biology, 1994, 14, 4596-4605.	2.3	38
57	Sequence elements required for transcriptional activity of the human myoglobin promoter in intact myocardium Circulation Research, 1993, 73, 360-366.	4.5	37
58	CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart. Circulation Research, 2020, 126, 6-24.	4.5	37
59	High-Phosphate Diet Induces Exercise Intolerance and Impairs Fatty Acid Metabolism in Mice. Circulation, 2019, 139, 1422-1434.	1.6	36
60	NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11299-11308.	7.1	35
61	Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. Proceedings of the United States of America, 2016, 113, E4494-503.	7.1	34
62	A 40-Kilodalton Protein Binds Specifically to an Upstream Sequence Element Essential for Muscle-Specific Transcription of the Human Myoglobin Promoter. Molecular and Cellular Biology, 1992, 12, 5024-5032.	2.3	33
63	A MED13-dependent skeletal muscle gene program controls systemic glucose homeostasis and hepatic metabolism. Genes and Development, 2016, 30, 434-446.	5.9	32
64	In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nature Communications, 2019, 10, 4537.	12.8	32
65	Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell–derived skeletal muscle in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
66	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	28.8	31
67	Myocardin-related transcription factors are required for skeletal muscle development. Development (Cambridge), 2016, 143, 2853-61.	2.5	28
68	Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes and Development, 2019, 33, 626-640.	5.9	27
69	Cullin-3–RING ubiquitin ligase activity is required for striated muscle function in mice. Journal of Biological Chemistry, 2018, 293, 8802-8811.	3.4	26
70	A consolidated AAV system for single-cut CRISPR correction of a common Duchenne muscular dystrophy mutation. Molecular Therapy - Methods and Clinical Development, 2021, 22, 122-132.	4.1	20
71	The cardiac-enriched microprotein mitolamban regulates mitochondrial respiratory complex assembly and function in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
72	The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nature Communications, 2021, 12, 690.	12.8	17

RHONDA BASSEL-DUBY

#	Article	IF	CITATIONS
73	Identification of a multipotent Twist2-expressing cell population in the adult heart. Proceedings of the United States of America, 2018, 115, E8430-E8439.	7.1	16
74	Direct reprogramming as a route to cardiac repair. Seminars in Cell and Developmental Biology, 2022, 122, 3-13.	5.0	16
75	Cardiac Myoediting Attenuates Cardiac Abnormalities in Human and Mouse Models of Duchenne Muscular Dystrophy. Circulation Research, 2021, 129, 602-616.	4.5	16
76	Sema3a-Nrp1 Signaling Mediates Fast-Twitch Myofiber Specificity of Tw2+ Cells. Developmental Cell, 2019, 51, 89-98.e4.	7.0	14
77	Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
78	Inhibitor-Resistant Tissue-Type Plasminogen Activator: An Improved Thrombolytic Agent In Vitro. Thrombosis and Haemostasis, 1994, 71, 124-128.	3.4	13
79	Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice. Molecular Therapy - Nucleic Acids, 2022, 28, 154-167.	5.1	12
80	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408, 112844.	2.6	11
81	A myocardin-adjacent IncRNA balances SRF-dependent gene transcription in the heart. Genes and Development, 2021, 35, 835-840.	5.9	10
82	Secreted MG53 From Striated Muscle Impairs Systemic Insulin Sensitivity. Circulation, 2019, 139, 915-917.	1.6	8
83	Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. Journal of Clinical Investigation, 2022, 132, .	8.2	7
84	Control of Muscle Metabolism by the Mediator Complex. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029843.	6.2	6
85	Toward CRISPR Therapies for Cardiomyopathies. Circulation, 2021, 144, 1525-1527.	1.6	6
86	P2570Synergistic activation of the cardiac enhancer landscape during reprogramming. European Heart Journal, 2019, 40, .	2.2	0