
Christine L Clarke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1229490/publications.pdf Version: 2024-02-01

CHDISTINE | CLARKE

#	Article	IF	CITATIONS
1	Rare germline copy number variants (CNVs) and breast cancer risk. Communications Biology, 2022, 5, 65.	2.0	6
2	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	2.2	15
3	Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. Journal of the National Cancer Institute, 2021, 113, 329-337.	3.0	45
4	CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers. British Journal of Cancer, 2021, 124, 842-854.	2.9	5
5	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	5.8	19
6	Increased prevalence of obstructive sleep apnea in women diagnosed with endometrial or breast cancer. PLoS ONE, 2021, 16, e0249099.	1.1	7
7	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	2.6	6
8	Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Research, 2021, 23, 86.	2.2	7
9	Mendelian randomisation study of smoking exposure in relation to breast cancer risk. British Journal of Cancer, 2021, 125, 1135-1145.	2.9	9
10	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
11	Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. American Journal of Human Genetics, 2020, 107, 837-848.	2.6	39
12	A tumour suppressive relationship between mineralocorticoid and retinoic acid receptors activates a transcriptional program consistent with a reverse Warburg effect in breast cancer. Breast Cancer Research, 2020, 22, 122.	2.2	6
13	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	9.4	265
14	Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk. Scientific Reports, 2020, 10, 9688.	1.6	2
15	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	0.6	32
16	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	5.8	30
17	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	2.3	28
18	Toward a Synergistic Operating Model for Westmead Research Hub Biobanks: A Questionnaire Study. Biopreservation and Biobanking, 2019, 17, 570-576.	0.5	1

#	Article	IF	CITATIONS
19	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	1.6	5
20	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90
21	Novel RU486 (mifepristone) analogues with increased activity against Venezuelan Equine Encephalitis Virus but reduced progesterone receptor antagonistic activity. Scientific Reports, 2019, 9, 2634.	1.6	13
22	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	2.9	52
23	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	2.6	711
24	Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Molecular and Cellular Endocrinology, 2018, 466, 2-14.	1.6	99
25	Profiling differential microRNA expression between in situ, infiltrative and lympho-vascular space invasive breast cancer: a pilot study. Clinical and Experimental Metastasis, 2018, 35, 3-13.	1.7	12
26	Predicting Functional Interactions Among DNA-Binding Proteins. Lecture Notes in Computer Science, 2018, , 70-80.	1.0	1
27	Identification of nine new susceptibility loci for endometrial cancer. Nature Communications, 2018, 9, 3166.	5.8	178
28	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	9.4	184
29	Emerging functional roles of nuclear receptors in breast cancer. Journal of Molecular Endocrinology, 2017, 58, R169-R190.	1.1	34
30	PR., 2017, , 1029-1038.		0
31	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	13.7	1,099
32	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
33	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
34	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	2.2	31
35	Genes associated with histopathologic features of triple negative breast tumors predict molecular subtypes. Breast Cancer Research and Treatment, 2016, 157, 117-131.	1.1	18
36	The Nuclear Receptor, RORγ, Regulates Pathways Necessary for Breast Cancer Metastasis. EBioMedicine, 2016, 6, 59-72.	2.7	40

#	Article	IF	CITATIONS
37	Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants. Journal of the National Cancer Institute, 2015, 107, .	3.0	428
38	Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Research and Treatment, 2015, 150, 71-80.	1.1	103
39	Progesterone receptor A predominance is a discriminator of benefit from endocrine therapy in the ATAC trial. Breast Cancer Research and Treatment, 2015, 151, 309-318.	1.1	37
40	Impact of Progesterone on Stem/Progenitor Cells in the Human Breast. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 27-37.	1.0	10
41	Minireview: Progesterone Regulation of Proliferation in the Normal Human Breast and in Breast Cancer: A Tale of Two Scenarios?. Molecular Endocrinology, 2015, 29, 1230-1242.	3.7	36
42	Development of a technique to detect the activated form of the progesterone receptor and correlation with clinical and histopathological characteristics of endometrioid adenocarcinoma of the uterine corpus. Gynecologic Oncology, 2015, 138, 663-667.	0.6	7
43	Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis. PLoS ONE, 2014, 9, e87301.	1.1	11
44	PRMT2 and RORÎ ³ Expression Are Associated With Breast Cancer Survival Outcomes. Molecular Endocrinology, 2014, 28, 1166-1185.	3.7	45
45	Biobanking Sustainability—Experiences of the Australian Breast Cancer Tissue Bank (ABCTB). Biopreservation and Biobanking, 2014, 12, 395-401.	0.5	17
46	Genomic Classification of Serous Ovarian Cancer with Adjacent Borderline Differentiates RAS Pathway and <i>TP53</i> -Mutant Tumors and Identifies <i>NRAS</i> as an Oncogenic Driver. Clinical Cancer Research, 2014, 20, 6618-6630.	3.2	96
47	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	2.2	97
48	Breast cancer prognosis predicted by nuclear receptor oregulator networks. Molecular Oncology, 2014, 8, 998-1013.	2.1	27
49	Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis, 2014, 35, 1012-1019.	1.3	145
50	Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Human Molecular Genetics, 2014, 23, 6034-6046.	1.4	12
51	Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget, 2014, 5, 8651-8664.	0.8	22
52	Bioinformatic analysis of cis-regulatory interactions between progesterone and estrogen receptors in breast cancer. PeerJ, 2014, 2, e654.	0.9	12
53	Open source tools for management and archiving of digital microscopy data to allow integration with patient pathology and treatment information. Diagnostic Pathology, 2013, 8, 22.	0.9	12
54	Distinct nuclear receptor expression in stroma adjacent to breast tumors. Breast Cancer Research and Treatment, 2013, 142, 211-223.	1.1	45

#	Article	IF	CITATIONS
55	Research Resource: Nuclear Receptors as Transcriptome: Discriminant and Prognostic Value in Breast Cancer. Molecular Endocrinology, 2013, 27, 350-365.	3.7	98
56	Prohibitin expression is associated with high grade breast cancer but is not a driver of amplification at 17q21.33. Pathology, 2013, 45, 629-636.	0.3	10
57	PR. , 2013, , 1-10.		О
58	Changed lineage composition is an early event in breast carcinogenesis. Histology and Histopathology, 2013, 28, 1197-204.	0.5	6
59	Electronic Biorepository Application System: Web-Based Software to Manage Receipt, Peer Review, and Approval of Researcher Applications to a Biobank. Biopreservation and Biobanking, 2012, 10, 37-44.	0.5	5
60	Protein arginine methyltransferase 6-dependent gene expression and splicing: association with breast cancer outcomes. Endocrine-Related Cancer, 2012, 19, 509-526.	1.6	37
61	Non-Overlapping Progesterone Receptor Cistromes Contribute to Cell-Specific Transcriptional Outcomes. PLoS ONE, 2012, 7, e35859.	1.1	67
62	Preview: MCE special issue on molecular mechanisms of action in progesterone signalling. Molecular and Cellular Endocrinology, 2012, 357, 1-3.	1.6	1
63	Development of a data entry auditing protocol and quality assurance for a tissue bank database. Cell and Tissue Banking, 2012, 13, 9-13.	0.5	6
64	A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nature Genetics, 2011, 43, 1210-1214.	9.4	279
65	Common Breast Cancer Susceptibility Loci Are Associated with Triple-Negative Breast Cancer. Cancer Research, 2011, 71, 6240-6249.	0.4	109
66	Comparison of Expression Profiles in Ovarian Epithelium In Vivo and Ovarian Cancer Identifies Novel Candidate Genes Involved in Disease Pathogenesis. PLoS ONE, 2011, 6, e17617.	1.1	36
67	Progesterone induces adult mammary stem cell expansion. Nature, 2010, 465, 803-807.	13.7	608
68	A class discovery and class prediction approach to histopathological classification of mammographic screen detected columnar cell lesions of the breast. Pathology, 2010, 42, 28-36.	0.3	2
69	Progesterone Action in Human Tissues: Regulation by Progesterone Receptor (PR) Isoform Expression, Nuclear Positioning and Coregulator Expression. Nuclear Receptor Signaling, 2009, 7, nrs.07009.	1.0	139
70	Nuclear matrix binding is critical for progesterone receptor movement into nuclear foci. FASEB Journal, 2009, 23, 546-556.	0.2	14
71	DNA Replication Licensing and Progenitor Numbers Are Increased by Progesterone in Normal Human Breast. Endocrinology, 2009, 150, 3318-3326.	1.4	122
72	Hormone-Responsive Model of Primary Human Breast Epithelium. Journal of Mammary Gland Biology and Neoplasia, 2009, 14, 367-379.	1.0	21

#	Article	IF	CITATIONS
73	Antiproliferative actions of the synthetic androgen, mibolerone, in breast cancer cells are mediated by both androgen and progesterone receptors. Journal of Steroid Biochemistry and Molecular Biology, 2008, 110, 236-243.	1.2	65
74	Poor-Prognosis Estrogen Receptor–Positive Breast Cancer Identified by Histopathologic Subclassification. Clinical Cancer Research, 2008, 14, 6625-6633.	3.2	13
75	Molecular Grading of Ductal Carcinoma <i>In situ</i> of the Breast. Clinical Cancer Research, 2008, 14, 8244-8252.	3.2	60
76	Global gene expression profiles of ovarian surface epithelial cells in vivo. Journal of Molecular Endocrinology, 2008, 40, 281-296.	1.1	13
77	Focal Subnuclear Distribution of Progesterone Receptor Is Ligand Dependent and Associated with Transcriptional Activity. Molecular Endocrinology, 2007, 21, 14-29.	3.7	44
78	Analysis of cancer risk and BRCA1 and BRCA2mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Research, 2006, 8, R12.	2.2	135
79	Predictors of Vinorelbine Pharmacokinetics and Pharmacodynamics in Patients With Cancer. Journal of Clinical Oncology, 2006, 24, 2448-2455.	0.8	58
80	Overlapping and Distinct Expression of Progesterone Receptors A and B in Mouse Uterus and Mammary Gland during the Estrous Cycle. Endocrinology, 2006, 147, 5503-5512.	1.4	58
81	Hepatic technetium Tc 99m?labeled sestamibi elimination rate and () genotype as indicators of ABCB1 (P-glycoprotein) activity in patients with cancer. Clinical Pharmacology and Therapeutics, 2005, 77, 33-42.	2.3	52
82	Expression of steroid hormone receptors in BRCA1-associated ovarian carcinomas. Gynecologic Oncology, 2005, 97, 16-25.	0.6	8
83	Trafficking of Circulating Pro-NK Cells to the Decidualizing Uterus: Regulatory Mechanisms in the Mouse and Human. Immunological Investigations, 2005, 34, 273-293.	1.0	63
84	Altered Progesterone Receptor Isoform Expression Remodels Progestin Responsiveness of Breast Cancer Cells. Molecular Endocrinology, 2005, 19, 2713-2735.	3.7	110
85	Subnuclear Distribution of Progesterone Receptors A and B in Normal and Malignant Endometrium. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1429-1442.	1.8	78
86	Expression of Progesterone Receptors A and B in the Mouse Ovary during the Estrous Cycle. Endocrinology, 2004, 145, 3487-3494.	1.4	69
87	Germ-line mutations inBRCA1 orBRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosomes and Cancer, 2004, 39, 236-248.	1.5	91
88	CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy*1. Clinical Pharmacology and Therapeutics, 2004, 75, 529-538.	2.3	86
89	Expression of Progesterone Receptor A and B Isoforms in Low-grade Endometrial Stromal Sarcoma. International Journal of Gynecological Pathology, 2004, 23, 138-144.	0.9	50
90	Progesterone receptors - animal models and cell signaling in breast cancer: Expression and transcriptional activity of progesterone receptor A and progesterone receptor B in mammalian cells. Breast Cancer Research, 2002, 4, 187-90.	2.2	101

#	Article	IF	CITATIONS
91	The hD52 (TPD52) gene is a candidate target gene for events resulting in increased 8q21 copy number in human breast carcinoma. Genes Chromosomes and Cancer, 2000, 29, 48-57.	1.5	82
92	Progesterone Receptors in Normal and Neoplastic Breast. , 2000, , 35-47.		0
93	Effect of Overexpression of Progesterone Receptor A on Endogenous Progestin-Sensitive Endpoints in Breast Cancer Cells. Molecular Endocrinology, 1999, 13, 1657-1671.	3.7	95
94	Coexpression of Alternatively Spliced Estrogen and Progesterone Receptor Transcripts in Human Breast Cancer ¹ . Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1370-1377.	1.8	25
95	Expression and Hormonal Regulation of the Sox4 Gene in Mouse Female Reproductive Tissues1. Biology of Reproduction, 1999, 61, 476-481.	1.2	51
96	Estrogens and progestins in mammary development and neoplasia. Introduction. Journal of Mammary Gland Biology and Neoplasia, 1998, 3, 1-2.	1.0	9
97	Loss of Nuclear BRCA1 Expression in Breast Cancers Is Associated with a Highly Proliferative Tumor Phenotype. Cancer Genetics and Cytogenetics, 1998, 101, 109-115.	1.0	52
98	Immunohistochemical Detection of Progesterone Receptors in Archival Breast Cancer. Biotechnic and Histochemistry, 1998, 73, 117-127.	0.7	16
99	Physiological Action of Progesterone in Target Tissues*. Endocrine Reviews, 1997, 18, 502-519.	8.9	700
100	Association of hereditary angioedema and hereditary breast cancer. Cancer Genetics and Cytogenetics, 1997, 95, 159-162.	1.0	5
101	Progesterone receptor A and B protein expression in human breast cancer. Journal of Steroid Biochemistry and Molecular Biology, 1996, 56, 93-98.	1.2	74
102	Preferential Stimulation of Human Progesterone Receptor B Expression by Estrogen in T-47D Human Breast Cancer Cells. Journal of Biological Chemistry, 1995, 270, 30693-30700.	1.6	75
103	The Effect of Progestins on Prolactin Receptor Gene Transcription in Human Breast Cancer Cells. DNA and Cell Biology, 1992, 11, 721-726.	0.9	20
104	Androgen regulation of prolactin-receptor gene expression in MCF-7 and MDA-MB-453 human breast cancer cells. International Journal of Cancer, 1992, 50, 777-782.	2.3	27
105	Steroid hormone receptor gene expression in human breast cancer cells: Inverse relationship between oestrogen and glucocorticoid receptor messenger RNA levels. International Journal of Cancer, 1990, 46, 1081-1087.	2.3	67
106	Solubilization and characterization of a lactogenic receptor from human placental chorion membranes. Journal of Cellular Biochemistry, 1990, 43, 1-15.	1.2	12
107	Cell-specific regulation of progesterone receptor in the female reproductive system. Molecular and Cellular Endocrinology, 1990, 70, C29-C33.	1.6	44
108	Progestin Regulation of Cellular Proliferation*. Endocrine Reviews, 1990, 11, 266-301.	8.9	615

#	Article	IF	CITATIONS
109	Progestin Inhibition of Progesterone Receptor Gene Expression in Human these steroids is determined in part by the cellular Breast Cancer Cells. Molecular Endocrinology, 1989, 3, 1377-1386.	3.7	115
110	A polyclonal antiserum against the rabbit progesterone receptor recognizes the human receptor: Biochemical characterization. Cell Biochemistry and Function, 1989, 7, 139-146.	1.4	2
111	A polyclonal antiserum against the rabbit progesterone receptor recognizes the human receptor: Immunohistochemical localization in rabbit and human uterus. Cell Biochemistry and Function, 1989, 7, 147-152.	1.4	7
112	Differential Distribution of Estrogen and Progesterone Receptors in Rabbit Uterus Detected by Dual Immunofluorescence*. Endocrinology, 1989, 125, 2728-2734.	1.4	19
113	Progestin-Mediated Changes in Progesterone Receptor Forms in the Normal Human Endometrium*. Endocrinology, 1988, 123, 2506-2513.	1.4	54
114	Chapter 12 Oestrogen actions. New Comprehensive Biochemistry, 1988, 18, 197-215.	0.1	6
115	Effect of photoaffinity labeling on rabbit uterine progesterone receptor. Analytical Biochemistry, 1986, 157, 154-161.	1.1	15
116	Enzymic synthesis of steroid sulphates XV. Structural domains of oestrogen sulphotransferase. BBA - Proteins and Proteomics, 1982, 707, 28-37.	2.1	10