## Akira Shimotoyodome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1229356/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | DOK7 Gene Therapy Enhances Neuromuscular Junction Innervation and Motor Function in Aged Mice.<br>IScience, 2020, 23, 101385.                                                                                                                    | 4.1 | 18        |
| 2 | Involvement of ammonia metabolism in the improvement of endurance performance by tea catechins in mice. Scientific Reports, 2020, 10, 6065.                                                                                                      | 3.3 | 20        |
| 3 | Continuous Supplementation of Milk Fat Globule Membrane with Habitual Exercise from a Young Age<br>Improves Motor Coordination and Skeletal Muscle Function in Aged Mice. Journal of Nutritional<br>Science and Vitaminology, 2019, 65, 405-413. | 0.6 | 7         |

The study of metabolic improvement by nutritional intervention controlling endogenous GIP (Mini) Tj ETQq000 rgBT/Overlock 10 Tf 50

| •  |                                                                                                                                                                                                                                                                                                                  | 011 | -  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 5  | Metabolic Signature of a Functional High-Catechin Tea after Acute and Sustained Consumption in<br>Healthy Volunteers through <sup>1</sup> H NMR Based Metabolomics Analysis of Urine. Journal of<br>Agricultural and Food Chemistry, 2019, 67, 3118-3124.                                                        | 5.2 | 8  |
| 6  | Hydroxyhydroquinone impairs fat utilization in mice by reducing nitric oxide availability. Journal of<br>Physiological Sciences, 2018, 68, 855-864.                                                                                                                                                              | 2.1 | 0  |
| 7  | Combined Supplementation of Pre-Exercise Carbohydrate, Alanine, and Proline and Continuous Intake of Green Tea Catechins Effectively Boost Endurance Performance in Mice. Nutrients, 2018, 10, 925.                                                                                                              | 4.1 | 9  |
| 8  | Rice bran triterpenoids improve postprandial hyperglycemia in healthy male adults: a randomized,<br>double-blind, placebo-controlled study. Food and Nutrition Research, 2018, 62, .                                                                                                                             | 2.6 | 4  |
| 9  | Increased plasma levels of glucose-dependent insulinotropic polypeptide are associated with<br>decreased postprandial energy expenditure after modern Japanese meals. European Journal of<br>Nutrition, 2017, 56, 1693-1705.                                                                                     | 3.9 | 4  |
| 10 | Reduction in hydroxyhydroquinone from coffee increases postprandial fat utilization in healthy<br>humans: a randomized double-blind, cross-over trial. Bioscience, Biotechnology and Biochemistry,<br>2017, 81, 1433-1435.                                                                                       | 1.3 | 3  |
| 11 | Dietary steamed wheat bran increases postprandial fat oxidation in association with a reduced blood<br>glucose-dependent insulinotropic polypeptide response in mice. Food and Nutrition Research, 2017, 61,<br>1361778.                                                                                         | 2.6 | 6  |
| 12 | Anti-obese and Anti-hyperglycemic Effects of Dietary Triterpene Alcohols and Sterols from Rice Bran<br>Oil. Oleoscience, 2017, 17, 269-276.                                                                                                                                                                      | 0.0 | 0  |
| 13 | Effects of Nutritional Supplementation with Milk Fat Globule Membrane on Physical and Muscle<br>Function in Healthy Adults Aged 60 and Over with Semiweekly Light Exercise: A Randomized<br>Double-Blind, Placebo-Controlled Pilot Trial. Journal of Nutritional Science and Vitaminology, 2016,<br>62. 409-415. | 0.6 | 23 |
| 14 | Impact of chlorogenic acids from coffee on urine metabolome in healthy human subjects. Food Research International, 2016, 89, 1064-1070.                                                                                                                                                                         | 6.2 | 26 |
| 15 | Daily consumption of tea catechins improves aerobic capacity in healthy male adults: a randomized double-blind, placebo-controlled, crossover trial. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2412-2417.                                                                                            | 1.3 | 19 |
| 16 | The Effects of a Hypocaloric Diet on Diet-Induced Thermogenesis and Blood Hormone Response in<br>Healthy Male Adults: A Pilot Study. Journal of Nutritional Science and Vitaminology, 2016, 62, 40-46.                                                                                                           | 0.6 | 8  |
| 17 | Triterpene alcohols and sterols from rice bran reduce postprandial hyperglycemia in rodents and humans. Molecular Nutrition and Food Research, 2016, 60, 1521-1531.                                                                                                                                              | 3.3 | 20 |
| 18 | Dietary milk fat globule membrane supplementation combined with regular exercise improves skeletal muscle strength in healthy adults: a randomized double-blind, placebo-controlled, crossover trial.<br>Nutrition Journal, 2015, 14, 85.                                                                        | 3.4 | 22 |

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of Exercise and Milk Fat Globule Membrane (MFGM) Supplementation on Body Composition,<br>Physical Function, and Hematological Parameters in Community-Dwelling Frail Japanese Women: A<br>Randomized Double Blind, Placebo-Controlled, Follow-Up Trial. PLoS ONE, 2015, 10, e0116256. | 2.5 | 133       |
| 20 | Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor l´ pathway. Journal of Nutritional Biochemistry, 2015, 26, 1058-1067.                                                                                          | 4.2 | 94        |
| 21 | Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1<br>(GLP-1(7–36)) amide in C57BL/6J mice. Journal of Nutritional Science, 2015, 4, e9.                                                                                                    | 1.9 | 37        |
| 22 | Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults. Nutrition Research, 2015, 35, 873-881.                                                                                                       | 2.9 | 54        |
| 23 | Daily consumption of milk fat globule membrane plus habitual exercise improves physical performance<br>in healthy middle-aged adults. SpringerPlus, 2015, 4, 120.                                                                                                                             | 1.2 | 27        |
| 24 | Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin<br>sensitivity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308,<br>E414-E425.                                                                       | 3.5 | 66        |
| 25 | Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes. Biochemical and Biophysical Research Communications, 2015, 461, 1-7.                                                                                                     | 2.1 | 27        |
| 26 | Deletion of nuclear factor-κB p50 upregulates fatty acid utilization and contributes to an anti-obesity<br>and high-endurance phenotype in mice. American Journal of Physiology - Endocrinology and<br>Metabolism, 2015, 309, E523-E533.                                                      | 3.5 | 16        |
| 27 | Triterpene alcohols and sterols from rice bran lower postprandial glucose-dependent insulinotropic<br>polypeptide release and prevent diet-induced obesity in mice. Journal of Applied Physiology, 2014, 117,<br>1337-1348.                                                                   | 2.5 | 25        |
| 28 | Dietary milk fat globule membrane improves endurance capacity in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1009-R1017.                                                                                                            | 1.8 | 20        |
| 29 | Habitual exercise plus dietary supplementation with milk fat globule membrane improves muscle<br>function deficits via neuromuscular development in senescence-accelerated mice. SpringerPlus, 2014,<br>3, 339.                                                                               | 1.2 | 34        |
| 30 | Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts<br>hypotensive, vasodilatory, and anti-inflammatory activities. Food and Function, 2013, 4, 1346.                                                                                               | 4.6 | 97        |
| 31 | Stimulation of Postprandial Fat Utilization in Healthy Humans by Daily Consumption of Chlorogenic<br>Acids. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1633-1636.                                                                                                                  | 1.3 | 43        |
| 32 | Effects of Continuous Ingestion of Hesperidin and Glucosyl Hesperidin on Vascular Gene Expression<br>in Spontaneously Hypertensive Rats. Journal of Nutritional Science and Vitaminology, 2013, 59, 470-473.                                                                                  | 0.6 | 29        |
| 33 | Dietary 1-monoolein decreases postprandial GIP release by reducing jejunal transport of glucose and<br>fatty acid in rodents. American Journal of Physiology - Renal Physiology, 2012, 303, G298-G310.                                                                                        | 3.4 | 11        |
| 34 | Hydroxypropylated distarch phosphate versus unmodified tapioca starch: fat oxidation and endurance<br>in C57BL/6J mice. European Journal of Applied Physiology, 2012, 112, 3409-3416.                                                                                                         | 2.5 | 6         |
| 35 | Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects. British Journal of Nutrition, 2011, 106, 96-104.              | 2.3 | 27        |
| 36 | Regulation of Postprandial Blood Metabolic Variables by TEMPO-Oxidized Cellulose Nanofibers.<br>Biomacromolecules, 2011, 12, 3812-3818.                                                                                                                                                       | 5.4 | 56        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Consumption of Coffee Polyphenols Increases Fat Utilization in Humans. Journal of Health Science, 2010, 56, 745-751.                                                                                                                                    | 0.9 | 26        |
| 38 | RS4-type resistant starch prevents high-fat diet-induced obesity via increased hepatic fatty acid<br>oxidation and decreased postprandial GIP in C57BL/6J mice. American Journal of Physiology -<br>Endocrinology and Metabolism, 2010, 298, E652-E662. | 3.5 | 56        |
| 39 | Coingestion of Acylglycerols Differentially Affects Glucose-Induced Insulin Secretion via<br>Glucose-Dependent Insulinotropic Polypeptide in C57BL/6J Mice. Endocrinology, 2009, 150, 2118-2126.                                                        | 2.8 | 36        |
| 40 | Effects of a Single and Shortâ€Term Ingestion of Diacylglycerol on Fat Oxidation in Rats. Lipids, 2008, 43, 409-17.                                                                                                                                     | 1.7 | 11        |
| 41 | Reduction of <i>Streptococcus mutans</i> Adherence and Dental Biofilm Formation by Surface<br>Treatment with Phosphorylated Polyethylene Glycol. Antimicrobial Agents and Chemotherapy, 2007, 51,<br>3634-3641.                                         | 3.2 | 30        |
| 42 | Saliva-Promoted Adhesion of <i>Streptococcus mutans</i> MT8148 Associates with Dental Plaque and Caries Experience. Caries Research, 2007, 41, 212-218.                                                                                                 | 2.0 | 12        |
| 43 | Statherin and Histatin 1 Reduce Parotid Saliva-Promoted <i>Streptococcus mutans</i><br>Strain MT8148 Adhesion to Hydroxyapatite Surfaces. Caries Research, 2006, 40, 403-411.                                                                           | 2.0 | 49        |
| 44 | Reduction of saliva-promoted adhesion ofStreptococcus mutansMT8148 and dental biofilm development by tragacanth gum and yeast-derived phosphomannan. Biofouling, 2006, 22, 261-268.                                                                     | 2.2 | 8         |
| 45 | Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise.<br>American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290,<br>R1550-R1556.                                | 1.8 | 169       |
| 46 | Exercise and Green Tea Extract Stimulate Fat Oxidation and Prevent Obesity in Mice. Medicine and Science in Sports and Exercise, 2005, 37, 1884-1892.                                                                                                   | 0.4 | 79        |
| 47 | Effects of Combination of Regular Exercise and Tea Catechins Intake on Energy Expenditure in Humans.<br>Journal of Health Science, 2005, 51, 233-236.                                                                                                   | 0.9 | 43        |
| 48 | Histochemical Structure of the Mucus Gel Layer Coating the Fecal Surface of Rodents, Rabbits and<br>Humans. Journal of Nutritional Science and Vitaminology, 2005, 51, 287-291.                                                                         | 0.6 | 7         |
| 49 | Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. American<br>Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R708-R715.                                                | 1.8 | 169       |
| 50 | Effects of coingestion of different fibers on fecal excretion and cecal fermentation in rats. Nutrition Research, 2005, 25, 1085-1096.                                                                                                                  | 2.9 | 7         |
| 51 | Improvement of macromolecular clearance via lymph flow in hamster gingiva by low-power carbon dioxide laser-irradiation. Lasers in Surgery and Medicine, 2001, 29, 442-447.                                                                             | 2.1 | 14        |
| 52 | Sulfated polysaccharides, but not cellulose, increase colonic mucus in rats with loperamide-induced constipation. Digestive Diseases and Sciences, 2001, 46, 1482-1489.                                                                                 | 2.3 | 50        |
| 53 | Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon.<br>Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2000, 125,<br>525-531.                                            | 1.8 | 142       |
| 54 | Decreased colonic mucus in rats with loperamide-induced constipation. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2000, 126, 203-212.                                                                      | 1.8 | 92        |