Liang-Shi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228884/publications.pdf Version: 2024-02-01

LIANC-SHILL

#	Article	IF	CITATIONS
1	Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science, 2001, 292, 2060-2063.	12.6	1,136
2	Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Letters, 2010, 10, 1869-1873.	9.1	837
3	Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. Journal of the American Chemical Society, 2010, 132, 5944-5945.	13.7	720
4	Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Letters, 2001, 1, 349-351.	9.1	593
5	Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 18932-18935.	13.7	545
6	Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. Journal of the American Chemical Society, 2002, 124, 7136-7145.	13.7	539
7	Colloidal Graphene Quantum Dots. Journal of Physical Chemistry Letters, 2010, 1, 2572-2576.	4.6	323
8	Semiconductor Nanorod Liquid Crystals. Nano Letters, 2002, 2, 557-560.	9.1	297
9	Triplet States and Electronic Relaxation in Photoexcited Graphene Quantum Dots. Nano Letters, 2010, 10, 2679-2682.	9.1	269
10	Independent Tuning of the Band Gap and Redox Potential of Graphene Quantum Dots. Journal of Physical Chemistry Letters, 2011, 2, 1119-1124.	4.6	189
11	Colloidal Graphene Quantum Dots with Well-Defined Structures. Accounts of Chemical Research, 2013, 46, 2254-2262.	15.6	181
12	Hot Electron Injection from Graphene Quantum Dots to TiO ₂ . ACS Nano, 2013, 7, 1388-1394.	14.6	172
13	Slow Hot-Carrier Relaxation in Colloidal Graphene Quantum Dots. Nano Letters, 2011, 11, 56-60.	9.1	138
14	A Torsional Strain Mechanism To Tune Pitch in Supramolecular Helices. Angewandte Chemie - International Edition, 2007, 46, 5873-5876.	13.8	124
15	Semiempirical Pseudopotential Calculation of Electronic States of CdSe Quantum Rods. Journal of Physical Chemistry B, 2002, 106, 2447-2452.	2.6	107
16	Well-Defined Nanographene–Rhenium Complex as an Efficient Electrocatalyst and Photocatalyst for Selective CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 3934-3937.	13.7	95
17	Alignment of Colloidal Graphene Quantum Dots on Polar Surfaces. Nano Letters, 2011, 11, 1524-1529.	9.1	93
18	A Model for the pH-Dependent Selectivity of the Oxygen Reduction Reaction Electrocatalyzed by N-Doped Graphitic Carbon. Journal of the American Chemical Society, 2016, 138, 13923-13929.	13.7	88

Liang-Shi Li

#	Article	IF	CITATIONS
19	Formation and Stabilization of Palladium Nanoparticles on Colloidal Graphene Quantum Dots. Journal of the American Chemical Society, 2012, 134, 16095-16098.	13.7	74
20	Self-assembly of amphiphiles with terthiophene and tripeptide segments into helical nanostructures. Tetrahedron, 2008, 64, 8504-8514.	1.9	69
21	Electrocatalytic Oxygen Activation by Carbanion Intermediates of Nitrogen-Doped Graphitic Carbon. Journal of the American Chemical Society, 2014, 136, 3358-3361.	13.7	68
22	Solution-chemistry approach to graphene nanostructures. Journal of Materials Chemistry, 2011, 21, 3295.	6.7	64
23	Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. Journal of Chemical Physics, 2004, 120, 1149-1152.	3.0	45
24	Expanding Frontiers in Biomaterials. MRS Bulletin, 2005, 30, 864-873.	3.5	41
25	Supersymmetric Unitary Operator for Some Generalized Jaynes–Cummings Models. Communications in Theoretical Physics, 1996, 25, 105-110.	2.5	38
26	Fluorescence Probes for Membrane Potentials Based on Mesoscopic Electron Transfer. Nano Letters, 2007, 7, 2981-2986.	9.1	34
27	Nanostructured Oligo(p-phenylene Vinylene)/Silicate Hybrid Films:Â One-Step Fabrication and Energy Transfer Studies. Journal of the American Chemical Society, 2006, 128, 5488-5495.	13.7	33
28	Surface Structure of CdSe Nanorods Revealed by Combined X-ray Absorption Fine Structure Measurements and ab Initio Calculations. Journal of Physical Chemistry C, 2007, 111, 75-79.	3.1	22
29	Understanding fundamental processes in carbon materials with well-defined colloidal graphene quantum dots. Current Opinion in Colloid and Interface Science, 2015, 20, 346-353.	7.4	22
30	Biexciton Auger Recombination in Colloidal Graphene Quantum Dots. Physical Review Letters, 2014, 113, 107401.	7.8	19
31	Biexciton Binding of Dirac fermions Confined in Colloidal Graphene Quantum Dots. Nano Letters, 2015, 15, 5472-5476.	9.1	15
32	Basal Plane Fluorination of Graphene by XeF ₂ via a Radical Cation Mechanism. Journal of Physical Chemistry Letters, 2015, 6, 3645-3649.	4.6	14
33	Redox "Innocence―of Re(I) in Electrochemical CO2 Reduction Catalyzed by Nanographene–Re Complexes. Inorganic Chemistry, 2018, 57, 10548-10556.	4.0	11
34	Reductive defluorination of graphite monofluoride by weak, non-nucleophilic reductants reveals low-lying electron-accepting sites. Physical Chemistry Chemical Physics, 2018, 20, 14287-14290.	2.8	9
35	Dynamics for preassigned generalized squeezing. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 212, 188-194.	2.1	8
36	Aromatic Fragmentation Based on a Ring Overlap Scheme: An Algorithm for Large Polycyclic Aromatic Hydrocarbons Using the Molecules-in-Molecules Fragmentation-Based Method. Journal of Chemical Theory and Computation, 2020, 16, 2160-2171.	5.3	7

#	Article	IF	CITATIONS
37	Reply to "On the Morse oscillator with a kinetic coupling―by Fernández. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 229, 264-266.	2.1	3
38	Oxygen Activation by N-doped Graphitic Carbon Nanostructures. Materials Research Society Symposia Proceedings, 2015, 1725, 12.	0.1	0