## Hironobu Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228776/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Contraction Control of Aligned Myofiber Sheet Tissue by Parallel Oriented Induced Pluripotent Stem<br>Cell-Derived Neurons. Tissue Engineering - Part A, 2022, 28, 661-671.                         | 3.1  | 7         |
| 2  | Harvest of quality-controlled bovine myogenic cells and biomimetic bovine muscle tissue engineering for sustainable meat production. Biomaterials, 2022, 287, 121649.                               | 11.4 | 14        |
| 3  | Simulated microgravity accelerates aging of human skeletal muscle myoblasts at the single cell level.<br>Biochemical and Biophysical Research Communications, 2021, 578, 115-121.                   | 2.1  | 15        |
| 4  | Enhanced mechanical properties and cell separation with thermal control of PIPAAm-brushed polymer-blend microfibers. Journal of Materials Chemistry B, 2020, 8, 6017-6026.                          | 5.8  | 18        |
| 5  | Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine.<br>Advanced Drug Delivery Reviews, 2019, 138, 276-292.                                             | 13.7 | 84        |
| 6  | Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle<br>Physiology. Scientific Reports, 2018, 8, 13932.                                                        | 3.3  | 54        |
| 7  | Human Neural Tissue Construct Fabrication Based on Scaffoldâ€Free Tissue Engineering. Advanced<br>Healthcare Materials, 2016, 5, 1931-1938.                                                         | 7.6  | 30        |
| 8  | Cell Sheetâ€Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using<br>Microfabricated Thermoresponsive Substrates. Advanced Healthcare Materials, 2015, 4, 2388-2407. | 7.6  | 65        |
| 9  | Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomaterialia, 2015, 16, 14-22.                                                  | 8.3  | 121       |
| 10 | Anisotropic Cellular Network Formation in Engineered Muscle Tissue through the Selfâ€Organization of Neurons and Endothelial Cells. Advanced Healthcare Materials, 2015, 4, 356-360.                | 7.6  | 36        |
| 11 | The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue. Biomaterials, 2013, 34, 7372-7380.                                                      | 11.4 | 121       |
| 12 | Control of the formation of vascular networks in 3D tissue engineered constructs. Biomaterials, 2013, 34, 696-703.                                                                                  | 11.4 | 48        |
| 13 | Terminally Functionalized Thermoresponsive Polymer Brushes for Simultaneously Promoting Cell<br>Adhesion and Cell Sheet Harvest. Biomacromolecules, 2012, 13, 253-260.                              | 5.4  | 80        |
| 14 | Micropatterned Thermoresponsive Polymer Brush Surfaces for Fabricating Cell Sheets with Well-Controlled Orientational Structures. Biomacromolecules, 2011, 12, 1414-1418.                           | 5.4  | 138       |
| 15 | Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation. Biomaterials, 2011, 32, 8830-8838.                                                          | 11.4 | 82        |
| 16 | Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell<br>Sheet Harvest. Biomacromolecules, 2010, 11, 1991-1999.                                         | 5.4  | 172       |