Hironobu Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228776/publications.pdf

Version: 2024-02-01

687363 940533 1,085 16 13 16 citations h-index g-index papers 16 16 16 1429 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell Sheet Harvest. Biomacromolecules, 2010, 11, 1991-1999.	5.4	172
2	Micropatterned Thermoresponsive Polymer Brush Surfaces for Fabricating Cell Sheets with Well-Controlled Orientational Structures. Biomacromolecules, 2011, 12, 1414-1418.	5 . 4	138
3	The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue. Biomaterials, 2013, 34, 7372-7380.	11.4	121
4	Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomaterialia, 2015, 16, 14-22.	8.3	121
5	Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Advanced Drug Delivery Reviews, 2019, 138, 276-292.	13.7	84
6	Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation. Biomaterials, 2011, 32, 8830-8838.	11.4	82
7	Terminally Functionalized Thermoresponsive Polymer Brushes for Simultaneously Promoting Cell Adhesion and Cell Sheet Harvest. Biomacromolecules, 2012, 13, 253-260.	5.4	80
8	Cell Sheetâ€Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates. Advanced Healthcare Materials, 2015, 4, 2388-2407.	7.6	65
9	Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology. Scientific Reports, 2018, 8, 13932.	3.3	54
10	Control of the formation of vascular networks in 3D tissue engineered constructs. Biomaterials, 2013, 34, 696-703.	11.4	48
11	Anisotropic Cellular Network Formation in Engineered Muscle Tissue through the Selfâ€Organization of Neurons and Endothelial Cells. Advanced Healthcare Materials, 2015, 4, 356-360.	7.6	36
12	Human Neural Tissue Construct Fabrication Based on Scaffoldâ€Free Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1931-1938.	7.6	30
13	Enhanced mechanical properties and cell separation with thermal control of PIPAAm-brushed polymer-blend microfibers. Journal of Materials Chemistry B, 2020, 8, 6017-6026.	5.8	18
14	Simulated microgravity accelerates aging of human skeletal muscle myoblasts at the single cell level. Biochemical and Biophysical Research Communications, 2021, 578, 115-121.	2.1	15
15	Harvest of quality-controlled bovine myogenic cells and biomimetic bovine muscle tissue engineering for sustainable meat production. Biomaterials, 2022, 287, 121649.	11.4	14
16	Contraction Control of Aligned Myofiber Sheet Tissue by Parallel Oriented Induced Pluripotent Stem Cell-Derived Neurons. Tissue Engineering - Part A, 2022, 28, 661-671.	3.1	7