
Yagang Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228624/publications.pdf Version: 2024-02-01

YACANC YAO

#	Article	IF	CITATIONS
1	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	21.0	78
2	Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 44, 104-135.	18.0	94
3	An electrospinning–electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Composites Part B: Engineering, 2022, 230, 109505.	12.0	60
4	Advances in synthesis and applications of boron nitride nanotubes: A review. Chemical Engineering Journal, 2022, 431, 134118.	12.7	38
5	Surfactant-modified Zn nanosheets on carbon paper for electrochemical CO ₂ reduction to CO. Chemical Communications, 2022, 58, 5096-5099.	4.1	11
6	"One Stone Two Birds―Design for Dualâ€Functional TiO ₂ â€TiN Heterostructures Enabled Dendriteâ€Free and Kineticsâ€Enhanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	19.5	80
7	Nanomaterials enhancing the solid-state storage and decomposition of ammonia. Nanotechnology, 2022, 33, 222001.	2.6	4
8	A green and facile method to fabricate multifunctional and highly thermally conductive boron nitrideâ€based polymer composites. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
9	Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Materials Science and Engineering Reports, 2022, 148, 100671.	31.8	30
10	CoNiO ₂ /Co ₄ N Heterostructure Nanowires Assisted Polysulfide Reaction Kinetics for Improved Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2104375.	11.2	42
11	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	47.7	126
12	Atomic Modulation of 3D Conductive Frameworks Boost Performance of MnO2 for Coaxial Fiber-Shaped Supercapacitors. Nano-Micro Letters, 2021, 13, 4.	27.0	20
13	Recent advances of electrically conductive metal-organic frameworks in electrochemical applications. Materials Today Nano, 2021, 13, 100105.	4.6	32
14	Highâ€Capacity Ironâ€Based Anodes for Aqueous Secondary Nickelâ^'Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 274-290.	3.4	23
15	Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries. Nano Research, 2021, 14, 91-99.	10.4	50
16	A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Research, 2021, 14, 81-90.	10.4	84
17	Realizing an Allâ€Round Hydrogel Electrolyte toward Environmentally Adaptive Dendriteâ€Free Aqueous Zn–MnO ₂ Batteries. Advanced Materials, 2021, 33, e2007559.	21.0	250
18	Structure-induced partial phase transformation endows hollow TiO ₂ /TiN heterostructure fibers stacked with nanosheet arrays with extraordinary sodium storage performance. Journal of Materials Chemistry A, 2021, 9, 12109-12118.	10.3	16

#	Article	IF	CITATIONS
19	The exceptionally high thermal conductivity after â€~alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN). Nanotechnology, 2021, 32, 135401.	2.6	22
20	Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management. Advanced Science, 2021, 8, 2003734.	11.2	108
21	Stratified Zincâ€Binding Strategy toward Prolonged Cycling and Flexibility of Aqueous Fibrous Zinc Metal Batteries. Advanced Energy Materials, 2021, 11, 2100214.	19.5	70
22	Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nature Communications, 2021, 12, 1416.	12.8	68
23	Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS Nano, 2021, 15, 6489-6498.	14.6	191
24	Advanced Thermally Drawn Multimaterial Fibers: Structure-Enabled Functionalities. Advanced Devices & Instrumentation, 2021, 2021, .	6.5	10
25	Flexible Tactile Sensor Based on Patterned Ag-Nanofiber Electrodes through Electrospinning. Sensors, 2021, 21, 2413.	3.8	18
26	NaTi2(PO4)3 hollow nanoparticles encapsulated in carbon nanofibers as novel anodes for flexible aqueous rechargeable sodium-ion batteries. Nano Energy, 2021, 82, 105764.	16.0	43
27	Horizontally aligned surface segments enhancing the adhesion of carbon nanotube forests. Carbon, 2021, 176, 540-547.	10.3	6
28	Recent Advances and Prospects of Fiberâ€ s haped Rechargeable Aqueous Alkaline Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100060.	5.8	5
29	Synthesis and Modification of Boron Nitride Nanomaterials for Electrochemical Energy Storage: From Theory to Application. Advanced Functional Materials, 2021, 31, 2106315.	14.9	51
30	Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nature Nanotechnology, 2021, 16, 1201-1207.	31.5	339
31	Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chemical Engineering Journal, 2021, 419, 129609.	12.7	54
32	Precise Proton Redistribution for Twoâ€Electron Redox in Aqueous Zinc/Manganese Dioxide Batteries. Advanced Energy Materials, 2021, 11, 2102055.	19.5	55
33	Towards ultrahigh-energy-density flexible aqueous rechargeable Ni//Bi batteries: Free-standing hierarchical nanowire arrays core-shell heterostructures system. Energy Storage Materials, 2021, 42, 815-825.	18.0	31
34	Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects. Nano Express, 2021, 2, 042002.	2.4	8
35	Unique Arrangement of Atoms Leads to Low Thermal Conductivity: A Comparative Study of Monolayer Mg ₂ C. Journal of Physical Chemistry Letters, 2021, 12, 10353-10358.	4.6	7
36	High apacity Ironâ€Based Anodes for Aqueous Secondary Nickel–Iron Batteries: Recent Progress and Prospects. ChemElectroChem, 2021, 8, 273-273.	3.4	2

#	Article	IF	CITATIONS
37	Precise Proton Redistribution for Twoâ€Electron Redox in Aqueous Zinc/Manganese Dioxide Batteries (Adv. Energy Mater. 41/2021). Advanced Energy Materials, 2021, 11, 2170162.	19.5	2
38	Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy, 2020, 67, 104212.	16.0	70
39	Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6â€V all-in-one supercapacitors. Energy Storage Materials, 2020, 25, 893-902.	18.0	27
40	All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Materials, 2020, 25, 124-130.	18.0	100
41	Stitching of Zn ₃ (OH) ₂ V ₂ O ₇ ·2H ₂ O 2D Nanosheets by 1D Carbon Nanotubes Boosts Ultrahigh Rate for Wearable Quasi-Solid-State Zinc-Ion Batteries. ACS Nano, 2020, 14, 842-853.	14.6	183
42	Surface-functionalized Fe2O3 nanowire arrays with enhanced pseudocapacitive performance as novel anode materials for high-energy-density fiber-shaped asymmetric supercapacitors. Electrochimica Acta, 2020, 330, 135247.	5.2	29
43	Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. Journal of Materials Chemistry A, 2020, 8, 3262-3269.	10.3	68
44	Rational design of flexible capacitive sensors with highly linear response over a broad pressure sensing range. Nanoscale, 2020, 12, 21198-21206.	5.6	38
45	Designer patterned functional fibers via direct imprinting in thermal drawing. Nature Communications, 2020, 11, 3842.	12.8	36
46	2D PbS Nanosheets with Zigzag Edges for Efficient CO 2 Photoconversion. Chemistry - A European Journal, 2020, 26, 13601-13605.	3.3	6
47	MOF-derived vertically stacked Mn ₂ 0 ₃ @C flakes for fiber-shaped zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 24031-24039.	10.3	48
48	Successive layer-by-layer deposition of metal (Mo, Ag)/BN/MoS2 nanolaminate films and the electric properties of BN/MoS2 heterostructure on different metal substrates. Journal of Materials Science: Materials in Electronics, 2020, 31, 9559-9567.	2.2	3
49	High-Performance and Ultraflexible Aqueous Rechargeable Lithium-Ion Batteries Developed by Constructing All Binder-free Electrode Materials. ACS Applied Materials & Interfaces, 2020, 12, 25700-25708.	8.0	18
50	The MgB ₂ -catalyzed growth of boron nitride nanotubes using B/MgO as a boron containing precursor. Nanoscale Advances, 2020, 2, 2731-2737.	4.6	5
51	Regulation of multidimensional silver nanostructures for high-performance composite conductive adhesives. Composites Part A: Applied Science and Manufacturing, 2020, 137, 106025.	7.6	25
52	Superstructured α-Fe2O3 nanorods as novel binder-free anodes for high-performing fiber-shaped Ni/Fe battery. Science Bulletin, 2020, 65, 812-819.	9.0	32
53	Rational Construction of Selfâ€Standing Sulfurâ€Doped Fe ₂ O ₃ Anodes with Promoted Energy Storage Capability for Wearable Aqueous Rechargeable NiCoâ€Fe Batteries. Advanced Energy Materials, 2020, 10, 2001064.	19.5	39
54	Engineering MoS ₂ Nanosheets on Spindle‣ike αâ€Fe ₂ O ₃ as Highâ€Performance Core–Shell Pseudocapacitive Anodes for Fiberâ€6haped Aqueous Lithiumâ€lon Capacitors. Advanced Functional Materials, 2020, 30, 2003967.	14.9	60

#	Article	IF	CITATIONS
55	All-Metal Phosphide Electrodes for High-Performance Quasi-Solid-State Fiber-Shaped Aqueous Rechargeable Ni–Fe Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12801-12808.	8.0	30
56	Interface engineered and surface modulated electrode materials for ultrahigh-energy-density wearable NiCo//Fe batteries. Energy Storage Materials, 2020, 27, 316-326.	18.0	40
57	Thermally Conductive Graphene Films for Heat Dissipation. ACS Applied Nano Materials, 2020, 3, 2149-2155.	5.0	33
58	Self-sacrificed synthesis of conductive vanadium-based Metal–Organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-Ion batteries. Nano Energy, 2019, 64, 103935.	16.0	107
59	First-principles study of electronic, optical and thermal transport properties of group III–VI monolayer MX (M = Ga, In; X = S, Se). Journal of Applied Physics, 2019, 125, .	2.5	61
60	Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. ACS Nano, 2019, 13, 11561-11571.	14.6	214
61	Flexible all-solid-state fiber-shaped Ni–Fe batteries with high electrochemical performance. Journal of Materials Chemistry A, 2019, 7, 520-530.	10.3	70
62	An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn–Ag ₂ O battery to harvest wind energy. Journal of Materials Chemistry A, 2019, 7, 2034-2040.	10.3	70
63	Fiber-Shaped Electrochemical Capacitors Based on Plasma-Engraved Graphene Fibers with Oxygen Vacancies for Alternating Current Line Filtering Performance. ACS Applied Energy Materials, 2019, 2, 993-999.	5.1	16
64	Duplex printing of all-in-one integrated electronic devices for temperature monitoring. Journal of Materials Chemistry A, 2019, 7, 972-978.	10.3	40
65	Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials. Nanoscale, 2019, 11, 11457-11463.	5.6	21
66	Anchoring V ₂ O ₅ nanosheets on hierarchical titanium nitride nanowire arrays to form core–shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12997-13006.	10.3	89
67	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	9.1	202
68	Direct Ink Writing of Adjustable Electrochemical Energy Storage Device with High Gravimetric Energy Densities. Advanced Functional Materials, 2019, 29, 1900809.	14.9	94
69	V ₂ O ₅ nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12979-12986.	10.3	101
70	Tuning the structures of boron nitride nanosheets by template synthesis and their application as lubrication additives in water. Applied Surface Science, 2019, 479, 119-127.	6.1	19
71	Scalable production of high-quality boron nitride nanosheets via a recyclable salt-templating method. Green Chemistry, 2019, 21, 6746-6753.	9.0	16
72	A one-dimensional channel self-standing MOF cathode for ultrahigh-energy-density flexible Ni–Zn batteries. Journal of Materials Chemistry A, 2019, 7, 27217-27224.	10.3	73

#	Article	IF	CITATIONS
73	All Binder-Free Electrodes for High-Performance Wearable Aqueous Rechargeable Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 101.	27.0	38
74	Conversion Synthesis of Self‣tanding Potassium Zinc Hexacyanoferrate Arrays as Cathodes for Highâ€Voltage Flexible Aqueous Rechargeable Sodiumâ€ŀon Batteries. Small, 2019, 15, e1905115.	10.0	37
75	Large improvement of thermal transport and mechanical performance of polyvinyl alcohol composites based on interface enhanced by SiO2 nanoparticle-modified-hexagonal boron nitride. Composites Science and Technology, 2019, 169, 167-175.	7.8	80
76	All Hierarchical Core–Shell Heterostructures as Novel Binderâ€Free Electrode Materials for Ultrahighâ€Energyâ€Density Wearable Asymmetric Supercapacitors. Advanced Science, 2019, 6, 1801379.	11.2	70
77	Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density. ACS Applied Materials & Interfaces, 2019, 11, 5938-5946.	8.0	31
78	Fully Solarâ€Powered Uninterrupted Overall Waterâ€Splitting Systems. Advanced Functional Materials, 2019, 29, 1808889.	14.9	24
79	Allâ€Solidâ€State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. Advanced Energy Materials, 2019, 9, 1802753.	19.5	197
80	An integrated strategy towards the high-yield fabrication of soluble boron nitride nanosheets. Chemical Engineering Journal, 2019, 360, 1407-1415.	12.7	19
81	Hierarchical NiCoP nanosheet arrays with enhanced electrochemical properties for high-performance wearable hybrid capacitors. Journal of Alloys and Compounds, 2019, 781, 783-789.	5.5	19
82	All-Solid-State Fiber-Shaped Asymmetric Supercapacitors with Ultrahigh Energy Density Based on Porous Vanadium Nitride Nanowires and Ultrathin Ni(OH) ₂ Nanosheet Wrapped NiCo ₂ O ₄ Nanowires Arrays Electrode. Journal of Physical Chemistry C, 2019, 123, 985-993.	3.1	31
83	Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors. Journal of Power Sources, 2018, 382, 122-127.	7.8	75
84	Ammonium-tungstate-promoted growth of boron nitride nanotubes. Nanotechnology, 2018, 29, 195604.	2.6	12
85	Hierarchically-structured Co3O4 nanowire arrays grown on carbon nanotube fibers as novel cathodes for high-performance wearable fiber-shaped asymmetric supercapacitors. Applied Surface Science, 2018, 447, 795-801.	6.1	43
86	Tribological characteristics of boron nitride nanosheets on silicon wafers obtained by the reaction of MgB 2 and NH 3. Surface and Coatings Technology, 2018, 340, 36-44.	4.8	12
87	Ultrafast Allâ€Solidâ€State Coaxial Asymmetric Fiber Supercapacitors with a High Volumetric Energy Density. Advanced Energy Materials, 2018, 8, 1702946.	19.5	86
88	MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy, 2018, 45, 420-431.	16.0	158
89	Highly Efficient Growth of Boron Nitride Nanotubes and the Thermal Conductivity of Their Polymer Composites. Journal of Physical Chemistry C, 2018, 122, 1867-1873.	3.1	39
90	Facile synthesis of hierarchical porous manganese nickel cobalt sulfide nanotube arrays with enhanced electrochemical performance for ultrahigh energy density fiber-shaped asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8030-8038.	10.3	62

#	Article	IF	CITATIONS
91	Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50†Wmâ^'1†Kâ^'1. Composites Science and Technology, 2018, 160, 199-207.	7.8	212
92	Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors. Nano Research, 2018, 11, 1775-1786.	10.4	55
93	3D Printing Fiber Electrodes for an Allâ€Fiber Integrated Electronic Device via Hybridization of an Asymmetric Supercapacitor and a Temperature Sensor. Advanced Science, 2018, 5, 1801114.	11.2	120
94	Facile Synthesis of Na-Doped MnO ₂ Nanosheets on Carbon Nanotube Fibers for Ultrahigh-Energy-Density All-Solid-State Wearable Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 37233-37241.	8.0	60
95	Allâ€Metalâ€Organic Frameworkâ€Derived Battery Materials on Carbon Nanotube Fibers for Wearable Energyâ€&torage Device. Advanced Science, 2018, 5, 1801462.	11.2	89
96	High-Performance Quasi-Solid-State Flexible Aqueous Rechargeable Ag–Zn Battery Based on Metal–Organic Framework-Derived Ag Nanowires. ACS Energy Letters, 2018, 3, 2761-2768.	17.4	125
97	Metal–Organic Framework Derived Spindle-like Carbon Incorporated α-Fe ₂ O ₃ Grown on Carbon Nanotube Fiber as Anodes for High-Performance Wearable Asymmetric Supercapacitors. ACS Nano, 2018, 12, 9333-9341.	14.6	263
98	Flexible quasi-solid-state 2.4 V aqueous asymmetric microsupercapacitors with ultrahigh energy density. Journal of Materials Chemistry A, 2018, 6, 20145-20151.	10.3	28
99	Large-scale fabrication of boron nitride nanotubes and their application in thermoplastic polyurethane based composite for improved thermal conductivity. Ceramics International, 2018, 44, 22794-22799.	4.8	15
100	Growth of boron nitride nanotubes from magnesium diboride catalysts. Nanoscale, 2018, 10, 13895-13901.	5.6	28
101	High-performance flexible all-solid-state aqueous rechargeable Zn–MnO ₂ microbatteries integrated with wearable pressure sensors. Journal of Materials Chemistry A, 2018, 6, 14594-14601.	10.3	91
102	Hot pressing-induced alignment of hexagonal boron nitride in SEBS elastomer for superior thermally conductive composites. RSC Advances, 2018, 8, 25835-25845.	3.6	24
103	Highly Efficient Mass Production of Boron Nitride Nanosheets via a Borate Nitridation Method. Journal of Physical Chemistry C, 2018, 122, 17370-17377.	3.1	21
104	One-Step in Situ Ball Milling Synthesis of Polymer-Functionalized Few-Layered Boron Nitride and Its Application in High Thermally Conductive Cellulose Composites. ACS Applied Nano Materials, 2018, 1, 4875-4883.	5.0	61
105	Rational Design of Hierarchical Titanium Nitride@Vanadium Pentoxide Core–Shell Heterostructure Fibrous Electrodes for High-Performance 1.6 V Nonpolarity Wearable Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 29705-29711.	8.0	22
106	Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. Journal of Materials Chemistry A, 2018, 6, 12091-12097.	10.3	88
107	Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Advances, 2018, 8, 21948-21967.	3.6	119
108	Novel coaxial fiber-shaped sensing system integrated with an asymmetric supercapacitor and a humidity sensor. Energy Storage Materials, 2018, 15, 315-323.	18.0	51

#	Article	IF	CITATIONS
109	Hierarchically structured VO2@PPy core-shell nanowire arrays grown on carbon nanotube fibers as advanced cathodes for high-performance wearable asymmetric supercapacitors. Carbon, 2018, 139, 21-28.	10.3	36
110	Conductivity enhancement of polymer composites using high-temperature short-time treated silver fillers. Composites Part A: Applied Science and Manufacturing, 2017, 100, 64-70.	7.6	31
111	A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity. Composites Science and Technology, 2017, 149, 41-47.	7.8	170
112	Wrapping Aligned Carbon Nanotube Composite Sheets around Vanadium Nitride Nanowire Arrays for Asymmetric Coaxial Fiber-Shaped Supercapacitors with Ultrahigh Energy Density. Nano Letters, 2017, 17, 2719-2726.	9.1	281
113	Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 98, 25-31.	7.6	242
114	An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo ₂ O ₄ and porous VN nanowires electrode materials. Journal of Materials Chemistry A, 2017, 5, 6928-6936.	10.3	81
115	Bimetallic catalytic growth of boron nitride nanotubes. Nanoscale, 2017, 9, 1816-1819.	5.6	25
116	Influence of self-consistent screening and polarizability contractions on interlayer sliding behavior of hexagonal boron nitride. Physical Review B, 2017, 96, .	3.2	1
117	Boron nitride nanotubes grown on stainless steel from a mixture of diboron trioxide and boron. Chemical Physics Letters, 2017, 687, 307-311.	2.6	22
118	Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Composites Part A: Applied Science and Manufacturing, 2017, 102, 1-8.	7.6	70
119	In Situ Generation of Photosensitive Silver Halide for Improving the Conductivity of Electrically Conductive Adhesives. ACS Applied Materials & amp; Interfaces, 2017, 9, 29047-29054.	8.0	39
120	Constructing hierarchical dandelion-like molybdenum–nickel–cobalt ternary oxide nanowire arrays on carbon nanotube fiber for high-performance wearable fiber-shaped asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 21153-21160.	10.3	63
121	Constructing Ultrahigh-Capacity Zinc–Nickel–Cobalt Oxide@Ni(OH) ₂ Core–Shell Nanowire Arrays for High-Performance Coaxial Fiber-Shaped Asymmetric Supercapacitors. Nano Letters, 2017, 17, 7552-7560.	9.1	231
122	Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy, 2017, 39, 219-228.	16.0	200
123	Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding. Polymers, 2017, 9, 662.	4.5	38
124	Controlled growth of MoS ₂ nanopetals and their hydrogen evolution performance. RSC Advances, 2016, 6, 18483-18489.	3.6	32
125	Electrically conductive adhesives based on thermoplastic polyurethane filled with silver flakes and carbon nanotubes. Composites Science and Technology, 2016, 129, 191-197.	7.8	73
126	Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition. Chemical Physics Letters, 2016, 652, 27-31.	2.6	20

#	Article	IF	CITATIONS
127	Freestanding Boron Nitride Nanosheet Films for Ultrafast Oil/Water Separation. Small, 2016, 12, 4960-4965.	10.0	40
128	Electrically conductive adhesives based on thermoplastic polyurethane filled with carbon nanotubes. , 2016, , .		0
129	Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: Size-dependent tunable photoluminescence, pH sensor and bioimaging. Colloids and Surfaces B: Biointerfaces, 2016, 140, 373-381.	5.0	58
130	Nonvolatile Floatingâ€Gate Memories Based on Stacked Black Phosphorus–Boron Nitride–MoS ₂ Heterostructures. Advanced Functional Materials, 2015, 25, 7360-7365.	14.9	129
131	Transfer of vertically aligned carbon nanotube arrays onto flexible substrates for gecko-inspired dry adhesive application. RSC Advances, 2015, 5, 46749-46759.	3.6	26
132	Electrical property enhancement of electrically conductive adhesives through Ag-coated-Cu surface treatment by terephthalaldehyde and iodine. Journal of Materials Chemistry C, 2015, 3, 6178-6184.	5.5	28
133	Double-Sided Transferred Carbon Nanotube Arrays for Improved Thermal Interface Materials. Journal of Electronic Packaging, Transactions of the ASME, 2015, 137, .	1.8	10
134	A fluorescent biosensor of lysozyme-stabilized copper nanoclusters for the selective detection of glucose. RSC Advances, 2015, 5, 101599-101606.	3.6	50
135	Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance. Carbon, 2015, 94, 650-660.	10.3	64
136	One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells. Nano Research, 2015, 8, 1975-1986.	10.4	130
137	Gold nanoclusters decorated with magnetic iron oxide nanoparticles for potential multimodal optical/magnetic resonance imaging. Journal of Materials Chemistry C, 2015, 3, 5910-5917.	5.5	45
138	CoPt/CeO ₂ catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes. Nanoscale, 2015, 7, 19699-19704.	5.6	7
139	Rational Design of a Printable, Highly Conductive Siliconeâ€based Electrically Conductive Adhesive for Stretchable Radioâ€Frequency Antennas. Advanced Functional Materials, 2015, 25, 464-470.	14.9	109
140	Carbon nanotubes inhibit the freeâ€radical crossâ€linking of siloxane polymers. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
141	Solution-processed anchoring zinc oxide quantum dots on covalently modified graphene oxide. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	3
142	Direct Growth of Nanographene on Silicon with Thin Oxide Layer for Highâ€Performance Nanographeneâ€Oxideâ€Silicon Diodes. Advanced Functional Materials, 2014, 24, 7613-7618.	14.9	13
143	The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation. Scientific Reports, 2014, 4, 4779.	3.3	78
144	The conduction development mechanism of silicone-based electrically conductive adhesives. Journal of Materials Chemistry C, 2013, 1, 4368.	5.5	30

#	Article	lF	CITATIONS
145	Low-cost micrometer-scale silicon vias (SVs) fabrication by metal-assisted chemical etching (MaCE) and carbon nanotubes (CNTs) filling. , 2013, , .		7
146	Highâ€Concentration Aqueous Dispersions of MoS ₂ . Advanced Functional Materials, 2013, 23, 3577-3583.	14.9	271
147	Water Vapor Treatment for Decreasing the Adhesion between Vertically Aligned Carbon Nanotubes and the Growth Substrate. Chemical Vapor Deposition, 2013, 19, 224-227.	1.3	2
148	Single/few-layer boron nitride-based nanocomposites for high thermal conductivity underfills. , 2012, , ,		7
149	Large-scale production of two-dimensional nanosheets. Journal of Materials Chemistry, 2012, 22, 13494.	6.7	351
150	Controlled Growth of Multilayer, Few-Layer, and Single-Layer Graphene on Metal Substrates. Journal of Physical Chemistry C, 2011, 115, 5232-5238.	3.1	119
151	Surface engineering of graphene for high performance supercapacitors. , 2011, , .		0
152	Ultrafast, dry microwave synthesis of graphene sheets. Journal of Materials Chemistry, 2010, 20, 4781.	6.7	128