Joachim Stadel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228407/publications.pdf Version: 2024-02-01

		18436	24179
117	17,335	62	110
papers	citations	h-index	g-index
117	117	117	6817
all docs	docs citations	times ranked	citing authors

ΙΟΛΟΗΙΜ STADEL

#	Article	IF	CITATIONS
1	Dark Matter Substructure within Galactic Halos. Astrophysical Journal, 1999, 524, L19-L22.	1.6	2,396
2	Cold collapse and the core catastrophe. Monthly Notices of the Royal Astronomical Society, 1999, 310, 1147-1152.	1.6	1,027
3	The inner structure of $\hat{\nu}\text{CDM}$ haloes - III. Universality and asymptotic slopes. Monthly Notices of the Royal Astronomical Society, 2004, 349, 1039-1051.	1.6	832
4	The inner structure of ÂCDM haloes I. A numerical convergence study. Monthly Notices of the Royal Astronomical Society, 2003, 338, 14-34.	1.6	767
5	Clumps and streams in the local dark matter distribution. Nature, 2008, 454, 735-738.	13.7	695
6	Gasoline: a flexible, parallel implementation of TreeSPH. New Astronomy, 2004, 9, 137-158.	0.8	551
7	Fundamental differences between SPH and grid methods. Monthly Notices of the Royal Astronomical Society, 0, 380, 963-978.	1.6	525
8	Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment. Monthly Notices of the Royal Astronomical Society, 2007, 378, 55-71.	1.6	466
9	Dark matter haloes within clusters. Monthly Notices of the Royal Astronomical Society, 1998, 300, 146-162.	1.6	414
10	Earth-mass dark-matter haloes as the first structures in the early Universe. Nature, 2005, 433, 389-391.	13.7	347
11	On the survival and destruction of spiral galaxies in clusters. Monthly Notices of the Royal Astronomical Society, 1999, 304, 465-474.	1.6	342
12	Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1021-1038.	1.6	336
13	The Structural Evolution of Substructure. Astrophysical Journal, 2003, 584, 541-558.	1.6	327
14	The Metamorphosis of Tidally Stirred Dwarf Galaxies. Astrophysical Journal, 2001, 559, 754-784.	1.6	312
15	Haloes gone MADâ˜: The Halo-Finder Comparison Project. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2293-2318.	1.6	302
16	Velocity and spatial biases in cold dark matter subhalo distributions. Monthly Notices of the Royal Astronomical Society, 2004, 352, 535-546.	1.6	289
17	Formation of Giant Planets by Fragmentation of Protoplanetary Disks. Science, 2002, 298, 1756-1759.	6.0	234
18	Density Profiles of Cold Dark Matter Substructure: Implications for the Missing‧atellites Problem. Astrophysical Journal, 2004, 608, 663-679.	1.6	226

#	Article	IF	CITATIONS
19	The Formation of a Realistic Disk Galaxy in ĥâ€dominated Cosmologies. Astrophysical Journal, 2004, 607, 688-696.	1.6	221
20	Does the Fornax dwarf spheroidal have a central cusp or core?. Monthly Notices of the Royal Astronomical Society, 2006, 368, 1073-1077.	1.6	213
21	Tidal Stirring and the Origin of Dwarf Spheroidals in the Local Group. Astrophysical Journal, 2001, 547, L123-L127.	1.6	208
22	Convergence and scatter of cluster density profiles. Monthly Notices of the Royal Astronomical Society, 2004, 353, 624-632.	1.6	206
23	Direct Large-Scale N-Body Simulations of Planetesimal Dynamics. Icarus, 2000, 143, 45-59.	1.1	205
24	Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks. Monthly Notices of the Royal Astronomical Society, 2006, 368, 563-570.	1.6	197
25	Evolution of the mass function of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2003, 346, 565-572.	1.6	187
26	Dark matter direct detection with non-Maxwellian velocity structure. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 030-030.	1.9	182
27	Morphological evolution of discs in clusters. Monthly Notices of the Royal Astronomical Society, 2005, 364, 607-619.	1.6	181
28	Cusps in cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2005, 364, 665-673.	1.6	168
29	The Evolution of Gravitationally Unstable Protoplanetary Disks: Fragmentation and Possible Giant Planet Formation. Astrophysical Journal, 2004, 609, 1045-1064.	1.6	165
30	The Causes of Halo Shape Changes Induced by Cooling Baryons: Disks versus Substructures. Astrophysical Journal, 2008, 681, 1076-1088.	1.6	153
31	PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys. Computational Astrophysics and Cosmology, 2017, 4, .	22.7	150
32	The gravitational and hydrodynamical interaction between the Large Magellanic Cloud and the Galaxy. Monthly Notices of the Royal Astronomical Society, 2005, 363, 509-520.	1.6	139
33	Structure finding in cosmological simulations: the state of affairs. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1618-1658.	1.6	138
34	Matter power spectrum and the challenge of percent accuracy. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 047-047.	1.9	137
35	Substructure in Dark Halos: Orbital Eccentricities and Dynamical Friction. Astrophysical Journal, 1999, 515, 50-68.	1.6	135
36	Dynamical friction in constant density cores: a failure of the Chandrasekhar formula. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1451-1460.	1.6	133

#	Article	IF	CITATIONS
37	From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus, 2010, 207, 517-535.	1.1	124
38	The Fate of Supermassive Black Holes and the Evolution of the M BH -σ Relation in Merging Galaxies: The Effect of Gaseous Dissipation. Astrophysical Journal, 2005, 623, L67-L70.	1.6	119
39	<i>Euclid</i> preparation: II. The <scp>EuclidEmulator</scp> – a tool to compute the cosmology dependence of the nonlinear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5509-5529.	1.6	117
40	The inner structure of \hat{P} CDM haloes $\hat{a} \in$ II. Halo mass profiles and low surface brightness galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2004, 355, 794-812.	1.6	116
41	Cooling flows within galactic haloes: the kinematics and properties of infalling multiphase gas. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1612-1622.	1.6	116
42	The effect of non-gravitational gas heating in groups and clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2002, 336, 409-424.	1.6	112
43	Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2007, 375, 53-67.	1.6	108
44	Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	1.9	108
45	The seeds of rich galaxy clusters in the Universe. Nature, 1998, 392, 359-361.	13.7	106
46	CORE CREATION IN GALAXIES AND HALOS VIA SINKING MASSIVE OBJECTS. Astrophysical Journal, 2010, 725, 1707-1716.	1.6	103
47	Radial distribution and strong lensing statistics of satellite galaxies and substructure using high-resolution ÂCDM hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2006, 366, 1529-1538.	1.6	99
48	The cosmic code comparison project. Computational Science & Discovery, 2008, 1, 015003.	1.5	99
49	Gravitational instability in binary protoplanetary discs: new constraints on giant planet formation. Monthly Notices of the Royal Astronomical Society, 2005, 363, 641-648.	1.6	96
50	Dark matter in Draco and the Local Group: Implications for direct detection experiments. Physical Review D, 2001, 64, .	1.6	95
51	Tidal debris of dwarf spheroidals as a probe of structure formation models. Monthly Notices of the Royal Astronomical Society, 2002, 336, 119-130.	1.6	89
52	Two-body relaxation in cold dark matter simulations. Monthly Notices of the Royal Astronomical Society, 2004, 348, 977-986.	1.6	89
53	The survival and disruption of cold dark matter microhaloes: implications for direct and indirect detection experiments. Monthly Notices of the Royal Astronomical Society, 2007, 375, 191-198.	1.6	89
54	Dark matter subhaloes in numerical simulations. Monthly Notices of the Royal Astronomical Society, 2005, 359, 1537-1548.	1.6	85

#	Article	IF	CITATIONS
55	THE GENGA CODE: GRAVITATIONAL ENCOUNTERS IN <i>N</i> BODY SIMULATIONS WITH GPU ACCELERATION. Astrophysical Journal, 2014, 796, 23.	1.6	85
56	Halo Substructure and Disk Heating in a ĥ Cold Dark Matter Universe. Astrophysical Journal, 2001, 563, L1-L4.	1.6	85
57	Evolution of the density profiles of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 0, 357, 82-96.	1.6	80
58	Preheating the Intracluster Medium in High-Resolution Simulations: The Effect on the Gas Entropy. Astrophysical Journal, 2001, 559, L71-L74.	1.6	80
59	The Local Group as a test of cosmological models. New Astronomy, 1997, 2, 91-106.	0.8	79
60	Intracluster Stellar Population Properties fromNâ€Body Cosmological Simulations. I. Constraints atz= 0. Astrophysical Journal, 2003, 594, 172-185.	1.6	77
61	The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 385, 2136-2142.	1.6	72
62	The Origin of Polar Ring Galaxies: Evidence for Galaxy Formation by Cold Accretion. Astrophysical Journal, 2006, 636, L25-L28.	1.6	71
63	Predicting the Number, Spatial Distribution, and Merging History of Dark Matter Halos. Astrophysical Journal, 2002, 564, 8-14.	1.6	67
64	Formation and Accretion History of Terrestrial Planets from Runaway Growth through to Late Time: Implications for Orbital Eccentricity. Astrophysical Journal, 2008, 685, 1247-1261.	1.6	64
65	The graininess of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2009, 394, 641-659.	1.6	64
66	<i>Euclid</i> preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2840-2869.	1.6	62
67	Forming Mercury by Giant Impacts. Astrophysical Journal, 2018, 865, 35.	1.6	60
68	Numerical aspects of giant impact simulations. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4252-4263.	1.6	56
69	The origin and tidal evolution of cuspy triaxial haloes. Monthly Notices of the Royal Astronomical Society, 2004, 354, 522-528.	1.6	55
70	Baryonic effects for weak lensing. Part I. Power spectrum and covariance matrix. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 019-019.	1.9	54
71	Fossil Remnants of Reionization in the Halo of the Milky Way. Astrophysical Journal, 2008, 689, L41-L44.	1.6	51
72	How common are Earth–Moon planetary systems?. Icarus, 2011, 214, 357-365.	1.1	51

#	Article	IF	CITATIONS
73	Discreteness Effects in ĥCDM Simulations: A Waveletâ€6tatistical View. Astrophysical Journal, 2008, 686, 1-12.	1.6	47
74	Towards an accurate mass function for precision cosmology. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1866-1882.	1.6	45
75	Stochasticity and predictability in terrestrial planet formation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2170-2188.	1.6	39
76	COLD DARK MATTER SUBSTRUCTURES IN EARLY-TYPE GALAXY HALOS. Astrophysical Journal, 2016, 824, 144.	1.6	38
77	A universal velocity distribution of relaxed collisionless structures. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 014-014.	1.9	37
78	Multimass spherical structure models for N-body simulations. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1543-1556.	1.6	35
79	Formation of LISA Black Hole Binaries in Merging Dwarf Galaxies: The Imprint of Dark Matter. Astrophysical Journal Letters, 2018, 864, L19.	3.0	33
80	On the Origin of Early-Type Galaxies and the Evolution of the Interaction Rate in the Field. Astronomical Journal, 1999, 117, 1651-1656.	1.9	33
81	MERGING GALAXY CLUSTERS: OFFSET BETWEEN THE SUNYAEV–ZEL'DOVICH EFFECT AND X-RAY PEAKS. Astrophysical Journal, 2012, 748, 45.	1.6	29
82	Bifurcation in the history of Uranus and Neptune: the role of giant impacts. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5336-5353.	1.6	27
83	An optimum time-stepping scheme forN-body simulations. Monthly Notices of the Royal Astronomical Society, 2007, 376, 273-286.	1.6	26
84	Simulations of gaseous disc-embedded planet interaction. Monthly Notices of the Royal Astronomical Society, 2004, 347, 421-429.	1.6	24
85	Super-Earths and dynamical stability of planetary systems: first parallel GPU simulations using GENGA. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2194-2205.	1.6	22
86	Nâ€₽oint Correlations in CDM and ΩCDM Simulations. Astrophysical Journal, 1999, 517, 54-63.	1.6	22
87	An Alternative to Grids and Glasses: Quaquaversal Preâ€Initial Conditions forNâ€Body Simulations. Astrophysical Journal, 2007, 656, 631-635.	1.6	21
88	The age dependence of galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2007, 378, 777-784.	1.6	21
89	Enhanced Mixing in Giant Impact Simulations with a New Lagrangian Method. Astrophysical Journal, 2019, 870, 127.	1.6	21
90	A performance study of cosmological simulations on message-passing and shared-memory multiprocessors. , 1996, , .		20

6

#	Article	IF	CITATIONS
91	THE PRE-MERGER IMPACT VELOCITY OF THE BINARY CLUSTER A1750 FROM X-RAY, LENSING, AND HYDRODYNAMICAL SIMULATIONS. Astrophysical Journal, 2013, 779, 63.	1.6	19
92	A Parallel Integration Method for Solar System Dynamics. Astronomical Journal, 1997, 114, 409.	1.9	19
93	The Descendants of Lyman Break Galaxies in Galaxy Clusters: Spatial Distribution and Orbital Properties. Astrophysical Journal, 2001, 547, 555-559.	1.6	19
94	The same with less: the cosmic web of warm versus cold dark matter dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4413-4423.	1.6	17
95	Dark energy perturbations in <i>N</i> -body simulations. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 013-013.	1.9	14
96	Primordial Earth Mantle Heterogeneity Caused by the Moon-forming Giant Impact?. Astrophysical Journal, 2019, 887, 211.	1.6	14
97	Machine learning applied to simulations of collisions between rotating, differentiated planets. Computational Astrophysics and Cosmology, 2020, 7, 2.	22.7	13
98	The velocity anisotropy—density slope relation. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 014-014.	1.9	11
99	Decaying dark matter: simulations and weak-lensing forecast. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 040.	1.9	9
100	The Origin of Cores and Density Profiles of Gaseous Baryonic Structures. Astrophysical Journal, 2003, 595, L37-L40.	1.6	8
101	Mars' Formation Can Constrain the Primordial Orbits of the Gas Giants. Astrophysical Journal Letters, 2021, 910, L16.	3.0	8
102	The strong fixed point property for small sets. Order, 1991, 8, 29-32.	0.3	7
103	High Performance Computational Astrophysics with PKDGRAV/Gasoline. Kluwer International Series in Engineering and Computer Science, 2002, , 501-523.	0.2	7
104	GENGA. II. GPU Planetary N-body Simulations with Non-Newtonian Forces and High Number of Particles. Astrophysical Journal, 2022, 932, 124.	1.6	7
105	Could Uranus and Neptune form by collisions of planetary embryos?. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1647-1660.	1.6	6
106	The EOS/resolution conspiracy: convergence in proto-planetary collision simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1806-1816.	1.6	6
107	On the age-radius relation and orbital history of cluster galaxies. Proceedings of the International Astronomical Union, 2004, 2004, .	0.0	5
108	Evolution of Dark Matter Halo Density Profiles and Substructure from \$Lambda\$CDM Simulations. Proceedings of the International Astronomical Union, 2004, 2004, 231-236.	0.0	4

#	Article	IF	CITATIONS
109	Did Uranus' regular moons form via a rocky giant impactor?. Icarus, 2022, 375, 114842.	1.1	4
110	A universal density slope – velocity anisotropy relation. EAS Publications Series, 2006, 20, 33-36.	0.3	3
111	Automated spectral line identification. Publications of the Astronomical Society of the Pacific, 1990, 102, 587.	1.0	3
112	The fate of LSB galaxies in clusters and the origin of the diffuse intra-cluster light. International Astronomical Union Colloquium, 1999, 171, 229-236.	0.1	2
113	Prospects for Cosmology with Cluster Mass Profiles. Astrophysical Journal, 1997, 477, L5-L8.	1.6	1
114	The pursuit of the whole NChilada: Virtual petaflops using multi-adaptive algorithms for gravitational systems. IBM Journal of Research and Development, 2004, 48, 183-197.	3.2	0
115	How common are Earth-Moon planetary systems?. Proceedings of the International Astronomical Union, 2010, 6, 414-415.	0.0	0
116	Numerical influences on galaxy formation. , 2004, , .		0
117	The cosmic web of dwarf galaxies in a warm versus cold dark matter universe: Mock galaxies in CDM and WDM simulations. , 2017, , .		0