Masaki Yamagata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Reduction of Oxygen in Some Hydrophobic Room-Temperature Molten Salt Systems. Journal of the Electrochemical Society, 2004, 151, A59.	2.9	144
2	An acidic cellulose–chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochemistry Communications, 2009, 11, 68-70.	4.7	137
3	A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor. Journal of Power Sources, 2008, 185, 1585-1588.	7.8	120
4	Electrochemical behavior of several iron complexes in hydrophobic room-temperature ionic liquids. Electrochimica Acta, 2007, 52, 3317-3322.	5.2	105
5	Electrochemical Behavior of Oxygen/Superoxide Ion Couple in 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Room-Temperature Molten Salt. Journal of the Electrochemical Society, 2005, 152, E247.	2.9	99
6	Electrochemical Behavior of Samarium, Europium, and Ytterbium in Hydrophobic Room-Temperature Molten Salt Systems. Journal of the Electrochemical Society, 2006, 153, E5.	2.9	90
7	Chitosan-based gel electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors. Electrochimica Acta, 2013, 100, 275-280.	5.2	88
8	Non-aqueous electrochemical capacitor utilizing electrolytic redox reactions of bromide species in ionic liquid. Electrochimica Acta, 2012, 86, 294-297.	5.2	72
9	Application of bis(fluorosulfonyl)imide-based ionic liquid electrolyte to silicon–nickel–carbon composite anode for lithium-ion batteries. Journal of Power Sources, 2010, 195, 6153-6156.	7.8	70
10	Electrodeposition of Metallic Lithium on a Tungsten Electrode in 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethanesulfone)imide Room-temperature Molten Salt. Electrochemistry, 2003, 71, 1033-1035.	1.4	68
11	In situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes. Scientific Reports, 2016, 6, 36153.	3.3	65
12	A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis(trifluoromethylsulfonyl)amide mixture as an electrolyte. Journal of Power Sources, 2008, 183, 724-729.	7.8	64
13	Charge–discharge behavior of graphite negative electrodes in bis(fluorosulfonyl)imide-based ionic liquid and structural aspects of their electrode/electrolyte interfaces. Electrochimica Acta, 2013, 110, 181-190.	5.2	62
14	Electrochemical properties of non-nano-silicon negative electrodes prepared with a polyimide binder. Journal of Power Sources, 2015, 273, 118-122.	7.8	62
15	High-performance graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2013, 227, 60-64.	7.8	46
16	Performance of Electric Double-Layer Capacitor with Acidic Cellulose–Chitin Hybrid Gel Electrolyte. Journal of the Electrochemical Society, 2010, 157, A203.	2.9	43
17	A sulfur–microporous carbon composite positive electrode for lithium/sulfur and silicon/sulfur rechargeble batteries. Progress in Natural Science: Materials International, 2015, 25, 612-621.	4.4	43
18	Electrochemical Behavior of Iron(II) Species in a Hydrophobic Room-temperature Molten Salt. Electrochemistry, 2005, 73, 564-566.	1.4	41

MASAKI YAMAGATA

#	Article	IF	CITATIONS
19	<i>In situ</i> SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. Microscopy (Oxford, England), 2015, 64, 159-168.	1.5	37
20	The First Lithium-ion Battery with Ionic Liquid Electrolyte Demonstrated in Extreme Environment of Space. Electrochemistry, 2015, 83, 918-924.	1.4	36
21	Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors. Journal of Power Sources, 2015, 280, 565-572.	7.8	35
22	High/low temperature operation of electric double layer capacitor utilizing acidic cellulose–chitin hybrid gel electrolyte. Journal of Power Sources, 2010, 195, 6245-6249.	7.8	29
23	Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor. Journal of Power Sources, 2008, 185, 1580-1584.	7.8	28
24	Charge-Discharge Characteristics of a LiNi1/3Mn1/3Co1/3O2 Cathode in FSI-based Ionic Liquids. Electrochemistry, 2012, 80, 808-811.	1.4	28
25	Design of an electrolyte composition for stable and rapid charging–discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Power Sources, 2015, 279, 766-773.	7.8	28
26	Effect of Electrolyte Additives on Non-Nano-Si Negative Electrodes Prepared with Polyimide Binder. Journal of the Electrochemical Society, 2015, 162, A406-A412.	2.9	28
27	Alginate Gel Containing an Ionic Liquid and Its Application to Non-Aqueous Electric Double Layer Capacitors. Electrochemical and Solid-State Letters, 2011, 14, A165.	2.2	24
28	Application of Fluorine-containing Solvents to LiCoO2 Cathode in High Voltage Operation. Electrochemistry, 2010, 78, 345-348.	1.4	23
29	Ultrahigh-performance nonaqueous electric double-layer capacitors using an activated carbon composite electrode with alginate. RSC Advances, 2013, 3, 1037-1040.	3.6	23
30	Effect of MWCNT Bundle Structure on Electric Double-Layer Capacitor Performance. Electrochemical and Solid-State Letters, 2009, 12, A45.	2.2	21
31	IV-SFG studies on the effect of Li+ in extending the electrochemical window at the Pt [C2mim][FSA] interface. Electrochemistry Communications, 2016, 72, 54-58.	4.7	21
32	Room-Temperature Fluorohydrogenate Ionic Liquids of Alkylpyridinium Cations and Allylated Quarternary Cyclic Ammonium Cations. Electrochemical and Solid-State Letters, 2009, 12, F9.	2.2	20
33	Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes. Journal of Power Sources, 2016, 326, 580-586.	7.8	20
34	Electrochemical Energy Storage Device with a Lewis Acidic AlBr ₃ â^'1-Ethyl-3-methylimidazolioum Bromide Room-Temperature Ionic Liquid. Journal of the Electrochemical Society, 2014, 161, A908-A914.	2.9	19
35	Novel rapid synthesis method of LiFePO4/C cathode material by high-frequency induction heating. Journal of Power Sources, 2013, 243, 481-487.	7.8	16
36	Application of Chitosan-based Gel Electrolytes with Ionic Liquids for High-Performance and Safe Electric Double Layer Capacitors. Electrochemistry, 2013, 81, 867-872.	1.4	14

MASAKI YAMAGATA

#	Article	IF	CITATIONS
37	Application of activated carbon/DNA composite electrodes to aqueous electric double layer capacitors. Journal of Power Sources, 2010, 195, 1753-1756.	7.8	13
38	Preparation of Micropore-rich High Surface Area Activated Carbon from N-doped Carbon Precursor and its Application to Positive Electrode in Lithium-sulfur Battery. Electrochemistry, 2017, 85, 650-655.	1.4	10
39	Electrochemical and structural properties of the electrical double layer of two-component electrolytes in response to varied electrode potential. Journal of Chemical Physics, 2016, 144, 134701.	3.0	9
40	Polysaccharide-Based Gel Electrolytes Containing Hydrophobic Ionic Liquids for Electric Double-Layer Capacitors. ECS Transactions, 2012, 41, 25-34.	0.5	8
41	Effects of Organic Additives on Lithium Insertion/extraction for Graphite Electrode in Ionic Liquid Electrolytes Based on Bis(fluorosulfonyl)imide. Electrochemistry, 2009, 77, 696-698.	1.4	7
42	Optimized condition of high-frequency induction heating for LiFePO 4 with ideal crystal structure. Journal of Power Sources, 2013, 243, 617-621.	7.8	7
43	Impact of Lithium Salt Addition to Ionic Liquid Electrolytes for High-performance Electric Double-layer Capacitors. Electrochemistry, 2013, 81, 857-862.	1.4	7
44	Performance Enhancement of Rechargeable Sulfur Cathode Utilizing Microporous Activated Carbon Composite. Electrochemistry, 2017, 85, 671-674.	1.4	7
45	Performance of Non-Aqueous Electrochemical Capacitor Utilizing Halogen Redox Reaction. ECS Transactions, 2012, 41, 15-23.	0.5	5
46	Electrochemical Behavior of Some Lanthanides in Imide Room-Temperature Molten Salt Systems. ECS Proceedings Volumes, 2002, 2002-19, 640-648.	0.1	4
47	Electrochemical Lithium Insertion/Extraction for Carbon Electrodes in FSI-based Ionic Liquids. ECS Transactions, 2009, 16, 67-73.	0.5	4
48	Li-Ion Battery Performance with FSI-Based Ionic Liquid Electrolyte and Fluorinated Solvent-Based Electrolyte. ECS Transactions, 2011, 33, 29-36.	0.5	4
49	Charge-Discharge Behavior of Electric Double-Layer Capacitor with Alginate/Ionic Liquid Gel Electrolyte. ECS Transactions, 2009, 25, 193-200.	0.5	3
50	Improvement of Synthesis Method for LiFePO4/C Cathode Material by High-Frequency Induction Heating. Electrochemistry, 2012, 80, 825-828.	1.4	2
51	Advanced Design of Lifsi-Based Electrolyte for High Performance Li-Ion Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
52	Application of Ionic Liquid Electrolyte to Lithium Ion Capacitor Based on Electrodes with Porous Three-Dimensional Current Collector. ECS Meeting Abstracts, 2016, , .	0.0	0
53	In Situ SEM Study on Electrochemical Lithiation/Delithiation Behavior of Silicon Anodes with Polyimide Binder. ECS Meeting Abstracts, 2016, , .	0.0	0
54	The Importance of Electrolyte Composition to the Charge-Discharge Performance of Lithium-Ion Batteries Using Ionic Liquids. ECS Meeting Abstracts, 2016, , .	0.0	0

MASAKI YAMAGATA

#	ARTICLE	IF	CITATIONS
55	Important Technical Elements to Enhance Electrochemical Capacitor Performance. ECS Meeting Abstracts, 2016, , .	0.0	0
56	Charge-Discharge Characteristics of Sulfur Positive Electrode with Highly Capacitive Micro-Porous Carbon from N-Doped Carbon Precursor. ECS Meeting Abstracts, 2016, , .	0.0	0
57	(Invited) Fsi-Based Ionic Liquid Electrolyte and Lifsi-Based Solvent Electrolyte for Excellent Lib Performance. ECS Meeting Abstracts, 2016, , .	0.0	0
58	Sulfur-Microporous Carbon Composite Positive Electrodes for Rechargeable Lithium Sulfur Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
59	(Invited) Lithium-Ion Capacitor Utilizing 3-D Current Collector with Bis(fluorosulfonyl)Imide-Based Electrolyte. ECS Meeting Abstracts, 2017, , .	0.0	0