List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228121/publications.pdf Version: 2024-02-01

Ηονς Υμλη

#	Article	IF	CITATIONS
1	Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, 2100748.	10.2	129
2	In-situ determination of onset lithium plating for safe Li-ion batteries. Journal of Energy Chemistry, 2022, 67, 255-262.	7.1	30
3	Anode Material Options Toward 500 Wh kg ^{â^'1} Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2103910.	5.6	63
4	Multiscale understanding of high-energy cathodes in solid-state batteries: from atomic scale to macroscopic scale. Materials Futures, 2022, 1, 012101.	3.1	34
5	Plating current density distribution of lithium metal anodes in pouch cells. Journal of Energy Chemistry, 2022, 69, 70-75.	7.1	15
6	Nanotube-based heterostructures for electrochemistry: A mini-review on lithium storage, hydrogen evolution and beyond. Journal of Energy Chemistry, 2022, 70, 630-642.	7.1	13
7	Dry electrode technology, the rising star in solid-state battery industrialization. Matter, 2022, 5, 876-898.	5.0	108
8	A perspective on energy chemistry of low-temperature lithium metal batteries. , 2022, 1, 72-81.		18
9	Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 71, 612-618.	7.1	54
10	Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. Journal of Energy Chemistry, 2022, 72, 158-165.	7.1	65
11	Anodeâ€Free Solidâ€ S tate Lithium Batteries: A Review. Advanced Energy Materials, 2022, 12, .	10.2	81
12	Dendriteâ€accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2, 435-444.	7.8	53
13	A review on the failure and regulation of solid electrolyte interphase in lithium batteries. Journal of Energy Chemistry, 2021, 59, 306-319.	7.1	183
14	Toward the Scaleâ€Up of Solidâ€State Lithium Metal Batteries: The Gaps between Labâ€Level Cells and Practical Largeâ€Format Batteries. Advanced Energy Materials, 2021, 11, 2002360.	10.2	103
15	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2021, 56, 391-394.	7.1	26
16	Formation mechanism of the solid electrolyte interphase in different ester electrolytes. Journal of Materials Chemistry A, 2021, 9, 19664-19668.	5.2	59
17	Critical Current Density in Solid‧tate Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials, 2021, 31, 2009925.	7.8	239
18	Stress Regulation on Atomic Bonding and Ionic Diffusivity: Mechanochemical Effects in Sulfide Solid Electrolytes. Energy & Fuels, 2021, 35, 10210-10218.	2.5	22

#	Article	IF	CITATIONS
19	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	7.8	208
20	A Selfâ€Limited Freeâ€Standing Sulfide Electrolyte Thin Film for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101985.	7.8	77
21	Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives. Small Science, 2021, 1, 2100058.	5.8	81
22	Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication. Particuology, 2021, 57, 56-71.	2.0	79
23	The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Science Advances, 2021, 7, eabi5520.	4.7	110
24	Dictating High apacity Lithium–Sulfur Batteries through Redoxâ€Mediated Lithium Sulfide Growth. Small Methods, 2020, 4, 1900344.	4.6	99
25	Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries. Energy Storage Materials, 2020, 25, 436-442.	9.5	85
26	Perspective on the critical role of interface for advanced batteries. Journal of Energy Chemistry, 2020, 47, 217-220.	7.1	127
27	Lithiumâ€5chwefelâ€Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. Angewandte Chemie, 2020, 132, 12736-12753.	1.6	33
28	Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652.	7.2	425
29	Interface enhanced well-dispersed Co9S8 nanocrystals as an efficient polysulfide host in lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 48, 109-115.	7.1	59
30	Ether-compatible lithium sulfur batteries with robust performance via selenium doping. Journal of Energy Chemistry, 2020, 46, 199-201.	7.1	4
31	The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Materials, 2020, 28, 401-406.	9.5	55
32	Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries. CheM, 2020, 6, 3297-3311.	5.8	177
33	A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes. Journal of Energy Chemistry, 2020, 48, 203-207.	7.1	68
34	Shielding Polysulfide Intermediates by an Organosulfur ontaining Solid Electrolyte Interphase on the Lithium Anode in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003012.	11.1	108
35	Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review. Chemical Research in Chinese Universities, 2020, 36, 377-385.	1.3	24
36	In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries. Energy Storage Materials, 2020, 30, 27-33.	9.5	90

#	Article	IF	CITATIONS
37	Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries. Energy Storage Materials, 2020, 31, 267-273.	9.5	45
38	Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chinese Chemical Letters, 2020, 31, 2339-2342.	4.8	50
39	The evolution and failure mechanism of lithium metal anode under practical working conditions. Journal of Energy Chemistry, 2020, 48, 424-425.	7.1	6
40	Slurryâ€Coated Sulfur/Sulfide Cathode with Li Metal Anode for Allâ€Solidâ€State Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2020, 3, 596-603.	2.4	50
41	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie - International Edition, 2020, 59, 17670-17675.	7.2	54
42	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie, 2020, 132, 17823-17828.	1.6	5
43	Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Letters, 2020, 5, 833-843.	8.8	322
44	Recent progress on biomassâ€derived ecomaterials toward advanced rechargeable lithium batteries. EcoMat, 2020, 2, e12019.	6.8	117
45	Practical fuel cells enabled by unprecedented oxygen reduction reaction on 3D nanostructured electrocatalysts. Journal of Energy Chemistry, 2020, 48, 107-108.	7.1	14
46	Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	2
47	Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	0
48	4.5â€V Highâ€Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode. Angewandte Chemie - International Edition, 2019, 58, 15235-15238.	7.2	47
49	4.5â€V Highâ€Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode. Angewandte Chemie, 2019, 131, 15379-15382.	1.6	7
50	Innentitelbild: 4.5â€V Highâ€Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode (Angew. Chem. 43/2019). Angewandte Chemie, 2019, 131, 15306-15306.	1.6	0
51	Sulfur Redox Reactions at Working Interfaces in Lithium–Sulfur Batteries: A Perspective. Advanced Materials Interfaces, 2019, 6, 1802046.	1.9	128
52	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
53	Fast Charging Lithium Batteries: Recent Progress and Future Prospects. Small, 2019, 15, e1805389.	5.2	277
54	Expediting redox kinetics of sulfur species by atomicâ€scale electrocatalysts in lithium–sulfur batteries. InformaÄnÃ-Materiály, 2019, 1, 533-541.	8.5	261

#	Article	IF	CITATIONS
55	Conductive and Catalytic Tripleâ€Phase Interfaces Enabling Uniform Nucleation in Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802768.	10.2	508
56	Graphitic carbon nitride quantum dot decorated three-dimensional graphene as an efficient metal-free electrocatalyst for triiodide reduction. Journal of Materials Chemistry A, 2018, 6, 5603-5607.	5.2	39
57	Rational integration of hierarchical structural CoS1.097 nanosheets/reduced graphene oxide nanocomposites with enhanced electrocatalytic performance for triiodide reduction. Carbon, 2018, 126, 514-521.	5.4	23
58	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	10.2	324
59	Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon, 2017, 119, 225-234.	5.4	63
60	Ni modified Ce(Mn, Fe)O2 cermet anode for high-performance direct carbon fuel cell. Electrochimica Acta, 2017, 232, 174-181.	2.6	24
61	Investigation of B-site doped perovskites Sr 2 Fe 1.4 X 0.1 Mo 0.5 O 6-δ (X=Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell. Journal of Power Sources, 2017, 365, 109-116.	4.0	37
62	Hierarchical hollow nanofiber networks for high-performance hybrid direct carbon fuel cells. Journal of Materials Chemistry A, 2017, 5, 17216-17220.	5.2	17
63	A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chinese Chemical Letters, 2017, 28, 2180-2194.	4.8	176
64	Facile synthesis of Co0.85Se nanotubes/reduced graphene oxide nanocomposite as Pt-free counter electrode with enhanced electrocatalytic performance in dye-sensitized solar cells. Carbon, 2017, 122, 381-388.	5.4	56
65	Ultrathin-walled Co9S8 nanotube/reduced graphene oxide composite as an efficient electrocatalyst for the reduction of triiodide. Journal of Power Sources, 2016, 336, 132-142.	4.0	31
66	In situ chemical vapor deposition growth of carbon nanotubes on hollow CoFe2O4 as an efficient and low cost counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2016, 325, 417-426.	4.0	53
67	Magnetic CoFe2O4 Nanoparticles Supported Basic Poly(Ionic Liquid)s Catalysts: Preparation and Catalytic Performance Comparison in Transesterification and Knoevenagel Condensation. Catalysis Letters, 2016, 146, 951-959.	1.4	19
68	Basic polymerized imidazolide-based ionic liquid: an efficient catalyst for aqueous Knoevenagel condensation. RSC Advances, 2015, 5, 21415-21421.	1.7	12
69	Synthesis of 2,3,8,9-Tetrahydropyrido[2,3- <i>d</i> :6,5- <i>d'</i>]dipyrimidine-4,6-diones. Chinese Journal of Organic Chemistry, 2013, 33, 174.	0.6	3