
Guixia Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Transfer Hydrogenation of Diaryl Ketones with Ethanol Catalyzed by Chiral <scp>NCP</scp> Pincer Iridium Complexes. Chinese Journal of Chemistry, 2022, 40, 1131-1136.	4.9	7
2	Iron Catalyzed Isomerization of <scp>αâ€Alkyl</scp> Styrenes to Access Trisubstituted Alkenes. Chinese Journal of Chemistry, 2021, 39, 585-589.	4.9	14
3	Iron-Catalyzed Regio- and Stereoselective Hydrosilylation of 1,3-Enynes To Access 1,3-Dienylsilanes. Organic Letters, 2021, 23, 2375-2379.	4.6	16
4	Ru-Catalyzed Site-Selective Aliphatic C–H Bond Silylation of Amides and Carbamides. Organometallics, 2021, 40, 2365-2370.	2.3	7
5	Pincer Iron Hydride Complexes for Alkene Isomerization: Catalytic Approach to Trisubstituted (<i>Z</i>)-Alkenyl Boronates. ACS Catalysis, 2021, 11, 10138-10147.	11.2	22
6	Ruthenium-Catalyzed Dual Dehydrogenative Silylation of C(sp ³)–H Bonds: Access to Diverse Silicon-Centered Spirocycles. Organic Letters, 2021, 23, 7603-7607.	4.6	6
7	Site-Selective Acceptorless Dehydrogenation of Aliphatics Enabled by Organophotoredox/Cobalt Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 16470-16485.	13.7	65
8	Chiral Iridium Complexes of Anionic NCP Pincer Ligand for Asymmetric Transfer Hydrogenation of 1,1-Diarylethenes with Ethanol. Organic Letters, 2021, 23, 8978-8983.	4.6	8
9	Ruthenium-Catalyzed Hydrodefluorination with Silane as the Directing and Reducing Group. Organic Letters, 2020, 22, 9298-9302.	4.6	10
10	Double-Linear Insertion Mode of α,ω-Dienes Enabled by Thio-imino-quinoline Iron Catalyst. ACS Catalysis, 2020, 10, 15092-15103.	11.2	7
11	N-Bridged Pincer Iridium Complexes for Highly Efficient Alkane Dehydrogenation and the Relevant Linker Effects. ACS Catalysis, 2020, 10, 6475-6487.	11.2	25
12	Recent Advances in <scp>Coordinationâ€Insertion</scp> Copolymerization of Ethylene with Polar Functionalized Comonomers. Chinese Journal of Chemistry, 2020, 38, 1445-1448.	4.9	12
13	NCPâ€Type Pincer Iridium Complexes Catalyzed Transferâ€Dehydrogenation of Alkanes and Heterocycles â€. Chinese Journal of Chemistry, 2020, 38, 837-841.	4.9	18
14	Dehydrogenation of Primary Alkyl Azides to Nitriles Catalyzed by Pincer Iridium/Ruthenium Complexes. ChemCatChem, 2020, 12, 3661-3665.	3.7	6
15	Ligand controlled cobalt catalyzed regiodivergent 1,2-hydroboration of 1,3-dienes. Science China Chemistry, 2019, 62, 336-340.	8.2	18
16	A BEt ₃ -Base Catalyst for Amide Reduction with Silane. Journal of Organic Chemistry, 2019, 84, 6084-6093.	3.2	34
17	Cobalt-Catalyzed Asymmetric Hydrogenation of Vinylsilanes with a Phosphine–Pyridine–Oxazoline Ligand: Synthesis of Optically Active Organosilanes and Silacycles. Organometallics, 2019, 38, 3906-3911.	2.3	26
18	A highly efficient cobalt-catalyzed deuterogenolysis of diboron: Synthesis of deuterated pinacolborane and vinylboronates. Tetrahedron, 2019, 75, 4138-4142.	1.9	8

Guixia Liu

#	Article	IF	CITATIONS
19	Recent advances in tridentate iron and cobalt complexes for alkene and alkyne hydrofunctionalizations. Coordination Chemistry Reviews, 2019, 386, 138-153.	18.8	139
20	Cobalt-Catalyzed Regio- and Enantioselective Markovnikov 1,2-Hydrosilylation of Conjugated Dienes. ACS Catalysis, 2019, 9, 1612-1618.	11.2	89
21	Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism. Journal of the American Chemical Society, 2018, 140, 4417-4429.	13.7	131
22	Cobalt-Catalyzed Hydroboration and Borylation of Alkenes and Alkynes. Synlett, 2018, 29, 1421-1429.	1.8	54
23	Mixed Diboration of Alkynes Catalyzed by LiOH: Regio- and Stereoselective Synthesis of <i>cis-</i> 1,2-Diborylalkenes. Organic Letters, 2018, 20, 7363-7366.	4.6	32
24	A New Phosphineâ€Amineâ€Oxazoline Ligand for Ruâ€Catalyzed Asymmetric Hydrogenation of <i>N</i> â€Phosphinylimines. Chinese Journal of Chemistry, 2018, 36, 1151-1155.	4.9	10
25	Rhodium(III) atalyzed Cascade Redoxâ€Neutral C–H Functionalization and Aromatization: Synthesis of Unsymmetrical <i>ortho</i> â€Biphenols. Advanced Synthesis and Catalysis, 2017, 359, 1643-1648.	4.3	24
26	Pincer Ruthenium Catalyzed Intramolecular Silylation of C(sp2)–H Bonds. Synlett, 2017, 28, 2468-2472.	1.8	4
27	Ruthenium-Catalyzed Site-Selective Intramolecular Silylation of Primary C–H Bonds for Synthesis of Sila-Heterocycles. Journal of the American Chemical Society, 2017, 139, 11601-11609.	13.7	62
28	Stereoselective Synthesis of Trisubstituted Alkenes via Cobalt-Catalyzed Double Dehydrogenative Borylations of 1-Alkenes. ACS Catalysis, 2017, 7, 6419-6425.	11.2	93
29	Rhodium(III)-Catalyzed Cascade Cyclization/Electrophilic Amidation for the Synthesis of 3-Amidoindoles and 3-Amidofurans. Organic Letters, 2016, 18, 2058-2061.	4.6	45
30	Regiocontrolled Coupling of Aromatic and Vinylic Amides with α-Allenols To Form γ-Lactams via Rhodium(III)-Catalyzed C–H Activation. Organic Letters, 2016, 18, 5668-5671.	4.6	85
31	Rhodium(III) Catalyzed Carboamination of Alkenes Triggered by C–H Activation of <i>N</i> -Phenoxyacetamides under Redox-Neutral Conditions. Organic Letters, 2016, 18, 1702-1705.	4.6	74
32	Rhodium(III) atalyzed Redoxâ€Neutral Cï£;H Annulation of Arylnitrones and Alkynes for the Synthesis of Indole Derivatives. Advanced Synthesis and Catalysis, 2015, 357, 2944-2950.	4.3	52
33	Cascade Synthesis of 3-Alkylidene Dihydrobenzofuran Derivatives via Rhodium(III)-Catalyzed Redox-Neutral C–H Functionalization/Cyclization. Organic Letters, 2015, 17, 5874-5877.	4.6	64
34	Synthesis of benzofurans via ruthenium-catalyzed redox-neutral C–H functionalization and reaction with alkynes under mild conditions. Organic Chemistry Frontiers, 2014, 1, 1161-1165.	4.5	60
35	Rhodium(III)â€Catalyzed Redoxâ€Neutral Coupling of <i>N</i> â€Phenoxyacetamides and Alkynes with Tunable Selectivity. Angewandte Chemie - International Edition, 2013, 52, 6033-6037.	13.8	293
36	Cationic Palladiumâ€Catalyzed [5+2] Annulation: Synthesis of 1â€Benzoxepines from 2â€Aroylmethoxyarylboronic Acids. Advanced Synthesis and Catalysis, 2007, 349, 2247-2252.	4.3	44

Guixia Liu

#	Article	IF	CITATIONS
37	Cationic Palladium Complex Catalyzed Highly Enantioselective Intramolecular Addition of Arylboronic Acids to Ketones. A Convenient Synthesis of Optically Active Cycloalkanols. Journal of the American Chemical Society, 2006, 128, 16504-16505.	13.7	137
38	Synthesis and photoluminescence of Y2O3:RE3+ (RE=Eu, Tb, Dy) porous nanotubes templated by carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2006, 6, 120-4.	0.9	0
39	Synthesis and characterization of SiO2/Gd2O3:Eu core–shell luminescent materials. Journal of Colloid and Interface Science, 2004, 278, 133-138.	9.4	90
40	Undirected, Asymmetric Alkyl Group Functionalizations through Alkane Dehydrogenation. Organic Letters, 0, , .	4.6	3
41	Dehydrogenation Based Asymmetric Epoxidation of Arylalkanes to Chiral Epoxides. Chinese Journal of Chemistry, 0, , .	4.9	7