Chengbo Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bright Aggregationâ€Inducedâ€Emission Dots for Targeted Synergetic NIRâ€II Fluorescence and NIRâ€I Photoacoustic Imaging of Orthotopic Brain Tumors. Advanced Materials, 2018, 30, e1800766.	11.1	330
2	Through Scalp and Skull NIRâ€II Photothermal Therapy of Deep Orthotopic Brain Tumors with Precise Photoacoustic Imaging Guidance. Advanced Materials, 2018, 30, e1802591.	11.1	330
3	In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science and Applications, 2018, 7, 91.	7.7	289
4	Ultrasmall Cu _{2â€<i>x</i>} S Nanodots for Highly Efficient Photoacoustic Imagingâ€Guided Photothermal Therapy. Small, 2015, 11, 2275-2283.	5.2	184
5	Molecular Engineering of Conjugated Polymers for Biocompatible Organic Nanoparticles with Highly Efficient Photoacoustic and Photothermal Performance in Cancer Theranostics. ACS Nano, 2017, 11, 10124-10134.	7.3	182
6	Precise Deciphering of Brain Vasculatures and Microscopic Tumors with Dual NIRâ€II Fluorescence and Photoacoustic Imaging. Advanced Materials, 2019, 31, e1902504.	11.1	181
7	Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power. ACS Applied Materials & Interfaces, 2019, 11, 5791-5803.	4.0	172
8	Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer. Biomaterials, 2016, 93, 10-19.	5.7	140
9	Single‣ayer MoS ₂ Nanosheets with Amplified Photoacoustic Effect for Highly Sensitive Photoacoustic Imaging of Orthotopic Brain Tumors. Advanced Functional Materials, 2016, 26, 8715-8725.	7.8	136
10	Highâ€Resolution 3D NIRâ€II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent. Advanced Materials, 2019, 31, e1808355.	11.1	133
11	Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Materials Horizons, 2017, 4, 1151-1156.	6.4	129
12	Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials, 2015, 73, 142-148.	5.7	111
13	Intravascular Optical-Resolution Photoacoustic Tomography with a 1.1 mm Diameter Catheter. PLoS ONE, 2014, 9, e92463.	1.1	103
14	Tocilizumab–Conjugated Polymer Nanoparticles for NIRâ€II Photoacousticâ€Imagingâ€Guided Therapy of Rheumatoid Arthritis. Advanced Materials, 2020, 32, e2003399.	11.1	88
15	A facile synthesis of versatile Cu2â^'xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging. Biomaterials, 2015, 57, 12-21.	5.7	83
16	Indocyanine Green-holo-Transferrin Nanoassemblies for Tumor-Targeted Dual-Modal Imaging and Photothermal Therapy of Glioma. ACS Applied Materials & Interfaces, 2017, 9, 39249-39258.	4.0	80
17	Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo. Optics Express, 2014, 22, 1500.	1.7	69
18	India Ink Incorporated Multifunctional Phase-transition Nanodroplets for Photoacoustic/Ultrasound Dual-modality Imaging and Photoacoustic Effect Based Tumor Therapy. Theranostics, 2014, 4, 1026-1038.	4.6	67

Chengbo Liu

#	Article	IF	CITATIONS
19	Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping. Biomedical Optics Express, 2018, 9, 1408.	1.5	66
20	High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. Journal of Biomedical Optics, 2015, 20, 1.	1.4	65
21	In Vivo Tumor Photoacoustic Imaging and Photothermal Therapy Based on Supraâ€ (Carbon Nanodots). Advanced Healthcare Materials, 2019, 8, e1800995.	3.9	61
22	Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging. Nanoscale Research Letters, 2016, 11, 85.	3.1	57
23	<i>In vivo</i> photoacoustic/ultrasonic dualâ€modality endoscopy with a miniaturized full fieldâ€ofâ€view catheter. Journal of Biophotonics, 2018, 11, e201800034.	1.1	55
24	<i>In vivo</i> assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Theranostics, 2020, 10, 4694-4704.	4.6	52
25	Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy. Photoacoustics, 2019, 15, 100143.	4.4	48
26	Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma. Biomaterials Science, 2019, 7, 3165-3177.	2.6	44
27	Highly Sensitive MoS2–Indocyanine Green Hybrid for Photoacoustic Imaging of Orthotopic Brain Clioma at Deep Site. Nano-Micro Letters, 2018, 10, 48.	14.4	41
28	Active-Targeting NIR-II Phototheranostics in Multiple Tumor Models Using Platelet-Camouflaged Nanoprobes. ACS Applied Materials & Interfaces, 2020, 12, 55624-55637.	4.0	39
29	Advances in Imaging Techniques and Genetically Encoded Probes for Photoacoustic Imaging. Theranostics, 2016, 6, 2414-2430.	4.6	38
30	Motion Correction in Optical Resolution Photoacoustic Microscopy. IEEE Transactions on Medical Imaging, 2019, 38, 2139-2150.	5.4	37
31	Manganese(II) Texaphyrin: A Paramagnetic Photoacoustic Contrast Agent Activated by Near-IR Light. Journal of the American Chemical Society, 2020, 142, 16156-16160.	6.6	37
32	Design and Synthesis of a Ratiometric Photoacoustic Probe for In Situ Imaging of Zinc Ions in Deep Tissue In Vivo. Analytical Chemistry, 2020, 92, 6382-6390.	3.2	37
33	The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy. Photoacoustics, 2019, 14, 12-18.	4.4	35
34	A new deep learning method for image deblurring in optical microscopic systems. Journal of Biophotonics, 2020, 13, e201960147.	1.1	35
35	Nonlinear mechanisms in photoacoustics—Powerful tools in photoacoustic imaging. Photoacoustics, 2021, 22, 100243.	4.4	35
36	Expanded porphyrins: functional photoacoustic imaging agents that operate in the NIR-II region. Chemical Science, 2021, 12, 9916-9921.	3.7	34

Снемдво Liu

#	Article	IF	CITATIONS
37	Functional Photoacoustic Imaging of Gastric Acid Secretion Using pHâ€Responsive Polyaniline Nanoprobes. Small, 2016, 12, 4690-4696.	5.2	32
38	Antimony Nanopolyhedrons with Tunable Localized Surface Plasmon Resonances for Highly Effective Photoacousticâ€Imagingâ€Guided Synergistic Photothermal/Immunotherapy. Advanced Materials, 2021, 33, e2100039.	11.1	32
39	Deep Learning Enables Superior Photoacoustic Imaging at Ultralow Laser Dosages. Advanced Science, 2021, 8, 2003097.	5.6	31
40	Single-shot linear dichroism optical-resolution photoacoustic microscopy. Photoacoustics, 2019, 16, 100148.	4.4	29
41	Opticalâ€resolution photoacoustic microscopy with ultrafast dualâ€wavelength excitation. Journal of Biophotonics, 2020, 13, e201960229.	1.1	28
42	Förster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for <i>In Situ</i> Visualization of Cancer Photothermal Therapy. Theranostics, 2018, 8, 410-422.	4.6	26
43	Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror. Optics Letters, 2020, 45, 4312.	1.7	25
44	Quantitative analysis on in vivo tumorâ€microvascular images from opticalâ€resolution photoacoustic microscopy. Journal of Biophotonics, 2019, 12, e201800421.	1.1	24
45	Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo. Journal of Biomedical Optics, 2018, 23, 1.	1.4	23
46	Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomaterialia, 2022, 137, 238-251.	4.1	18
47	Opto-acoustic synergistic irradiation for vaporization of natural melanin-cored nanodroplets at safe energy levels and efficient sono-chemo-photothermal cancer therapy. Theranostics, 2020, 10, 10448-10465.	4.6	17
48	In vivo intravascular photoacoustic imaging at a high speed of 100 frames per second. Biomedical Optics Express, 2020, 11, 6721.	1.5	17
49	Degradable mesoporous semimetal antimony nanospheres for near-infrared II multimodal theranostics. Nature Communications, 2022, 13, 539.	5.8	17
50	Compressed sensing based virtual-detector photoacoustic microscopy <i>in vivo</i> . Journal of Biomedical Optics, 2014, 19, 036003.	1.4	16
51	Compact and low-cost handheld quasibright-field linear-array probe design in photoacoustic computed tomography. Journal of Biomedical Optics, 2018, 23, 1.	1.4	16
52	Photoacoustic Imaging: Bright Aggregationâ€Inducedâ€Emission Dots for Targeted Synergetic NIRâ€I Fluorescence and NIRâ€I Photoacoustic Imaging of Orthotopic Brain Tumors (Adv. Mater. 29/2018). Advanced Materials, 2018, 30, 1870214.	11.1	15
53	Dedicated Photoacoustic Imaging Instrument for Human Periphery Blood Vessels: A New Paradigm for Understanding the Vascular Health. IEEE Transactions on Biomedical Engineering, 2022, 69, 1093-1100.	2.5	15
54	In vivo transrectal imaging of canine prostate with a sensitive and compact handheld transrectal array photoacoustic probe for early diagnosis of prostate cancer. Biomedical Optics Express, 2019, 10, 1707.	1.5	14

Снемдво Liu

#	Article	IF	CITATIONS
55	Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
56	Visualizing tumor angiogenesis and boundary with polygon-scanning multiscale photoacoustic microscopy. Photoacoustics, 2022, 26, 100342.	4.4	14
57	Full three-dimensional segmentation and quantification of tumor vessels for photoacoustic images. Photoacoustics, 2020, 20, 100212.	4.4	13
58	Multiscale Vascular Enhancement Filter Applied to <i>In Vivo</i> Morphologic and Functional Photoacoustic Imaging of Rat Ocular Vasculature. IEEE Photonics Journal, 2019, 11, 1-12.	1.0	12
59	Sparse-sampling photoacoustic computed tomography: Deep learning vs. compressed sensing. Biomedical Signal Processing and Control, 2022, 71, 103233.	3.5	12
60	Deâ€noising of photoacoustic sensing and imaging based on combined empirical mode decomposition and independent component analysis. Journal of Biophotonics, 2019, 12, e201900042.	1.1	9
61	Breaking Acoustic Limit of Optical Focusing Using Photoacousticâ€Guided Wavefront Shaping. Laser and Photonics Reviews, 2021, 15, 2000594.	4.4	9
62	A Low Cost Sensitive Transrectal Photoacoustic Probe With Single-Fiber Bright-Field Illumination for <i>In Vivo</i> Canine Prostate Imaging and Real-Time Biopsy Needle Guidance. IEEE Sensors Journal, 2020, 20, 10974-10980.	2.4	8
63	Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation. Applied Optics, 2020, 59, 712.	0.9	7
64	Photoacoustic visualization of the fluence rate dependence of photodynamic therapy. Biomedical Optics Express, 2020, 11, 4203.	1.5	7
65	Lack of association between acupoint sensitization and microcirculatory structural changes in a mouse model of knee osteoarthritis: A pilot study. Journal of Biophotonics, 2019, 12, e201800458.	1.1	6
66	Targeted imaging of orthotopic prostate cancer by using clinical transformable photoacoustic molecular probe. BMC Cancer, 2020, 20, 419.	1.1	6
67	Optical fiber-based handheld polarized photoacoustic computed tomography for detecting anisotropy of tissues. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2238-2246.	1.1	5
68	Video-rate high-resolution single-pixel nonscanning photoacoustic microscopy. Biomedical Optics Express, 2022, 13, 3823.	1.5	5
69	Deep Learningâ€Based Opticalâ€Resolution Photoacoustic Microscopy for In Vivo 3D Microvasculature Imaging and Segmentation. Advanced Intelligent Systems, 2022, 4, .	3.3	4
70	Achieving depth-independent lateral resolution in AR-PAM using the synthetic-aperture focusing technique. Photoacoustics, 2022, 26, 100328.	4.4	3
71	Recovery of photoacoustic images based on accurate ultrasound positioning. Visual Computing for Industry, Biomedicine, and Art, 2021, 4, 7.	2.2	2
72	Optical resolution photoacoustic computed microscopy. Optics Letters, 2021, 46, 372.	1.7	1

#	Article	IF	CITATIONS
73	Nanoparticles for Photoacoustic Imaging. , 2016, , 159-187.		0