Jonghoek Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1228045/publications.pdf

Version: 2024-02-01

623734 713466 69 611 14 21 citations g-index h-index papers 70 70 70 322 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cooperative localization and control of multiple heterogeneous robots using a string formation. Asian Journal of Control, 2023, 25, 794-806.	3.0	2
2	Asymptotic Boundary Shrink Control With Multirobot Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 591-605.	9.3	4
3	Fast Path Planning of Autonomous Vehicles in 3D Environments. Applied Sciences (Switzerland), 2022, 12, 4014.	2.5	5
4	Locating an Underwater Target Using Angle-Only Measurements of Heterogeneous Sonobuoys Sensors with Low Accuracy. Sensors, 2022, 22, 3914.	3.8	5
5	Fast Route Planner Considering Terrain Information. Sensors, 2022, 22, 4518.	3.8	2
6	Automatic Thread Defect Examination System. Applied Sciences (Switzerland), 2022, 12, 6109.	2.5	0
7	Tracking a Ground Target Utilizing Doppler-Only Measurements of a Single Passive Sonar Sensor Assisted by Straight Road Constraints. IEEE Access, 2022, 10, 74198-74206.	4.2	О
8	Tracking Controllers to Chase a Target Using Multiple Autonomous Underwater Vehicles Measuring the Sound Emitted From the Target. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4579-4587.	9.3	7
9	Particle Discharge Rate Analysis and Control Laws of the Exit Gate for Pyramidal Hoppers. International Journal of Control, Automation and Systems, 2021, 19, 2529-2535.	2.7	О
10	Autonomous Balloon Controls for Protection against Projectiles with Known Destinations. Applied Sciences (Switzerland), 2021, 11, 4077.	2.5	1
11	Coverage control of multiple robots in cluttered threeâ€dimensional environments. IET Radar, Sonar and Navigation, 2021, 15, 1016-1029.	1.8	2
12	Constructing 3D Underwater Sensor Networks without Sensing Holes Utilizing Heterogeneous Underwater Robots. Applied Sciences (Switzerland), 2021, 11, 4293.	2.5	7
13	Direction of Arrival Estimation Using Four Isotropic Receivers. IEEE Instrumentation and Measurement Magazine, 2021, 24, 77-81.	1.6	4
14	Topological Map Building with Multiple Agents Having Abilities of Dropping Indexed Markers. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 103, 1.	3.4	2
15	Three dimensional tracking of a maneuvering emitter utilizing doppler-bearing measurements of a constant velocity observer. Signal Processing, 2021, 189, 108246.	3.7	8
16	Distributed herding of multiple robots in cluttered environments. Robotics and Autonomous Systems, 2021, 146, 103889.	5.1	0
17	Hybrid TOA–DOA techniques for maneuvering underwater target tracking using the sensor nodes on the sea surface. Ocean Engineering, 2021, 242, 110110.	4.3	12
18	Multipoint Rendezvous in Multirobot Systems. IEEE Transactions on Cybernetics, 2020, 50, 310-323.	9.5	17

#	Article	IF	CITATIONS
19	Target Following and Close Monitoring Using an Unmanned Surface Vehicle. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 4233-4242.	9.3	17
20	Robust and efficient WLS-based dynamic state estimation considering transformer core saturation. Journal of the Franklin Institute, 2020, 357, 12938-12959.	3.4	0
21	Truck Platoon Control Considering Heterogeneous Vehicles. Applied Sciences (Switzerland), 2020, 10, 5067.	2.5	9
22	Distributed Rendezvous of Heterogeneous Robots with Motion-Based Power Level Estimation. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 1417-1427.	3.4	7
23	Optimal motion controllers for an unmanned surface vehicle to track a maneuvering underwater target based on coarse range-bearing measurements. Ocean Engineering, 2020, 216, 107973.	4.3	3
24	Non-line-of-sight error mitigating algorithms for transmitter localization based on hybrid TOA/RSSI measurements. Wireless Networks, 2020, 26, 3629-3635.	3.0	10
25	Tracking a manoeuvring target while mitigating NLOS errors in TDOA measurements. IET Radar, Sonar and Navigation, 2020, 14, 495-502.	1.8	6
26	Underwater surface scan utilizing an unmanned underwater vehicle with sampled range information. Ocean Engineering, 2020, 207, 107345.	4.3	2
27	Perpendicular Parking of Car-like Robots Allowing a Cusp on the Path. IEEE Access, 2020, , 1-1.	4.2	19
28	Cooperative Localization and Unknown Currents Estimation Using Multiple Autonomous Underwater Vehicles. IEEE Robotics and Automation Letters, 2020, 5, 2365-2371.	5.1	50
29	Three dimensional distributed rendezvous in spherical underwater robots considering power consumption. Ocean Engineering, 2020, 199, 107050.	4.3	6
30	3D path planner of an autonomous underwater vehicle to track an emitter using frequency and azimuth–elevation angle measurements. IET Radar, Sonar and Navigation, 2020, 14, 1236-1243.	1.8	6
31	Cooperative localisation for deepâ€sea exploration using multiple unmanned underwater vehicles. IET Radar, Sonar and Navigation, 2020, 14, 1244-1248.	1.8	8
32	Autonomous Underwater Vehicle Localization Using Sound Measurements of Passing Ships. Applied Sciences (Switzerland), 2020, 10, 9139.	2.5	3
33	Filter reâ€start strategy for angleâ€only tracking of a highly manoeuvrable target considering the target's destination information. IET Radar, Sonar and Navigation, 2020, 14, 935-943.	1.8	2
34	3D reactive surface scan utilising a robot with rigidly mounted range sensors. IET Radar, Sonar and Navigation, 2020, 14, 2010-2016.	1.8	0
35	Intruder capture algorithms considering visible intruders. International Journal of Advanced Robotic Systems, 2019, 16, 172988141984673.	2.1	2
36	Obstacle information aided target tracking algorithms for angleâ€only tracking of a highly maneuverable target in three dimensions. IET Radar, Sonar and Navigation, 2019, 13, 1074-1080.	1.8	12

#	Article	lF	CITATIONS
37	Multi-robot global sonar survey in the presence of strong currents. Ocean Engineering, 2019, 188, 106316.	4.3	4
38	Three Dimensional Formation Control to Pursue an Underwater Evader Utilizing Underwater Robots Measuring the Sound Generated From the Evader. IEEE Access, 2019, 7, 150720-150728.	4.2	5
39	Maneuvering target tracking of underwater autonomous vehicles based on bearing-only measurements assisted by inequality constraints. Ocean Engineering, 2019, 189, 106404.	4.3	14
40	Threeâ€dimensional discreteâ€time controller to intercept a targeted UAV using a capture net towed by multiple aerial robots. IET Radar, Sonar and Navigation, 2019, 13, 682-688.	1.8	14
41	Three-dimensional multi-robot control to chase a target while not being observed. International Journal of Advanced Robotic Systems, 2019, 16, 172988141982966.	2.1	10
42	Multirobot Exploration While Building Power-Efficient Sensor Networks in Three Dimensions. IEEE Transactions on Cybernetics, 2019, 49, 2771-2778.	9.5	9
43	Fast nonâ€lineâ€ofâ€sight receivers conjecturing method in TDOA localisation using obstacle information. IET Radar, Sonar and Navigation, 2019, 13, 347-351.	1.8	9
44	Time-efficient path planning using two virtual robots. International Journal of Advanced Robotic Systems, 2019, 16, 172988141988674.	2.1	3
45	Guidance control to capture a target using communication between the autonomous aerial vehicle and remote sensors. IET Radar, Sonar and Navigation, 2019, 13, 1816-1825.	1.8	0
46	Boundary Tracking Control for Autonomous Vehicles with Rigidly Mounted Range Sensors. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 1041-1048.	3.4	6
47	Control laws to avoid collision with three dimensional obstacles using sensors. Ocean Engineering, 2019, 172, 342-349.	4.3	18
48	Multi-robot rendezvous based on bearing-aided hierarchical tracking of network topology. Ad Hoc Networks, 2019, 86, 131-143.	5.5	26
49	Path plan strategy of an underwater robot to approach a moving emitter while maximising sound intensity measurements. IET Radar, Sonar and Navigation, 2019, 13, 795-801.	1.8	7
50	Observer manoeuvre control to track multiple targets considering Dopplerâ€bearing measurements in threat environments. IET Radar, Sonar and Navigation, 2019, 13, 2158-2165.	1.8	8
51	Stealth path planning for a high speed torpedo-shaped autonomous underwater vehicle to approach a target ship. Cyber-Physical Systems, 2018, 4, 1-16.	2.0	20
52	Controllers to Chase a High-Speed Evader Using a Pursuer with Variable Speed. Applied Sciences (Switzerland), 2018, 8, 1976.	2.5	8
53	Workspace exploration and protection with multiple robots assisted by sensor networks. International Journal of Advanced Robotic Systems, 2018, 15, 172988141879217.	2.1	10
54	Motion control of multiple autonomous ships to approach a target without being detected. International Journal of Advanced Robotic Systems, 2018, 15, 172988141876318.	2.1	24

#	Article	IF	CITATIONS
55	Bearingsâ€only target motion analysis of a highly manoeuvring target. IET Radar, Sonar and Navigation, 2017, 11, 1011-1019.	1.8	27
56	Cooperative Exploration and Networking While Preserving Collision Avoidance. IEEE Transactions on Cybernetics, 2017, 47, 4038-4048.	9.5	24
57	Capturing intruders based on Voronoi diagrams assisted by information networks. International Journal of Advanced Robotic Systems, 2017, 14, 172988141668269.	2.1	15
58	Power Link Optimization for a Neurostimulator in Nasal Cavity. International Journal of Antennas and Propagation, 2017, 2017, 1-6.	1.2	0
59	Observer motion controls for multiple targets considering Doppler-bearing measurements. , 2016, , .		1
60	Inequality constrained Kalman filter for Bearing-Only Target Motion Analysis. , 2015, , .		2
61	Cooperative exploration and protection of a workspace assisted by information networks. Annals of Mathematics and Artificial Intelligence, 2014, 70, 203-220.	1.3	23
62	Intruder capturing game on a topological map assisted by information networks., 2011,,.		6
63	A provably complete exploration strategy by constructing Voronoi diagrams. Autonomous Robots, 2010, 29, 367-380.	4.8	31
64	Battery Level Estimation of Mobile Agents under Communication Constraints. , 2010, , .		1
65	An exploration strategy by constructing Voronoi diagrams with provable completeness. , 2009, , .		4
66	Curve Tracking Control for Autonomous Vehicles with Rigidly Mounted Range Sensors. Journal of Intelligent and Robotic Systems: Theory and Applications, 2009, 56, 177-197.	3.4	30
67	Simultaneous Cooperative Exploration and Networking Based on Voronoi Diagrams. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 1-6.	0.4	10
68	Three dimensional motion camouflage guidance utilizing multiple leaders and one interceptor. IET Radar, Sonar and Navigation, 0, , .	1.8	0
69	Autonomous rover guidance and localization by measuring the peak of a tall landmark. Asian Journal of Control, 0, , .	3.0	1