
William A Maher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicology and Environmental Safety, 2003, 54, 366-374.	2.9	206
2	TOXICITY, BIOTRANSFORMATION, AND MODE OF ACTION OF ARSENIC IN TWO FRESHWATER MICROALGAE (CHLORELLA SP. AND MONORAPHIDIUM ARCUATUM). Environmental Toxicology and Chemistry, 2005, 24, 2630.	2.2	179
3	Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 888-897.	0.7	126
4	Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environmental Chemistry, 2009, 6, 133.	0.7	111
5	A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta, 2007, 71, 537-549.	2.9	106
6	A demonstration of the use of ultra-performance liquid chromatography–mass spectrometry [UPLC/MS] in the determination of amphetamine-type substances and ketamine for forensic and toxicological analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 836, 111-115.	1.2	89
7	Contribution of Arsenic Species in Unicellular Algae to the Cycling of Arsenic in Marine Ecosystems. Environmental Science & Technology, 2015, 49, 33-50.	4.6	87
8	Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Marine Chemistry, 2008, 108, 172-183.	0.9	82
9	Silicon isotopic fractionation in marine sponges: A new model for understanding silicon isotopic variations in sponges. Earth and Planetary Science Letters, 2010, 292, 281-289.	1.8	79
10	Measurement of arsenic species in marine macroalgae by microwave-assisted extraction and high performance liquid chromatography–inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2002, 457, 173-185.	2.6	72
11	Measurement of Inorganic Arsenic Species in Rice after Nitric Acid Extraction by HPLC-ICPMS: Verification Using XANES. Environmental Science & Technology, 2013, 47, 5821-5827.	4.6	68
12	Measurement of arsenic species in marine sediments by high-performance liquid chromatography–inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2003, 477, 279-291.	2.6	66
13	Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 2014, 106, 126-135.	2.9	64
14	Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract. Food Chemistry, 2016, 212, 189-197.	4.2	61
15	Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Marine and Freshwater Research, 2002, 53, 971.	0.7	55
16	Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Applied Organometallic Chemistry, 2007, 21, 396-411.	1.7	55
17	Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HCAAS. Talanta, 2011, 85, 49-55.	2.9	55
18	Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS. Journal of Analytical Atomic Spectrometry, 2015, 30, 2129-2183.	1.6	52

#	Article	IF	CITATIONS
19	Arsenic Species Determination in Biological Tissues by HPLC - ICP - MS and HPLC - HG - ICP - MS. Australian Journal of Chemistry, 2004, 57, 957.	0.5	51
20	Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchemical Journal, 2018, 140, 214-221.	2.3	51
21	Determination of arsenic in arsenic compounds and marine biological tissues using low volume microwave digestion and electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1999, 14, 1193-1207.	1.6	49
22	Overview of hyphenated techniques using an ICP-MS detector with an emphasis on extraction techniques for measurement of metalloids by HPLC–ICPMS. Microchemical Journal, 2012, 105, 15-31.	2.3	49
23	The influence of arsenate and phosphate exposure on arsenic uptake, metabolism and species formation in the marine phytoplankton Dunaliella tertiolecta. Marine Chemistry, 2013, 157, 78-85.	0.9	49
24	An automated hydride generation-cryogenic trapping-ICP-MS system for measuring inorganic and methylated Ge, Sb and As species in marine and fresh waters. Journal of Analytical Atomic Spectrometry, 2002, 17, 197-203.	1.6	48
25	Ecological Effects of Serial Impoundment on the Cotter River, Australia. Hydrobiologia, 2006, 572, 255-273.	1.0	47
26	Arsenic bioaccumulation and species in marine polychaeta. Applied Organometallic Chemistry, 2005, 19, 917-929.	1.7	45
27	Sponges as sentinels: Patterns of spatial and intra-individual variation in trace metal concentration. Marine Pollution Bulletin, 2012, 64, 80-89.	2.3	45
28	Evaluation of a sequential extraction scheme to study associations of trace elements in estuarine and oceanic sediments. Bulletin of Environmental Contamination and Toxicology, 1984, 32, 339-344.	1.3	43
29	Low volume microwave digestion for the determination of selenium in marine biological tissues by graphite furnace atomic absorption spectroscopy. Analytica Chimica Acta, 1997, 350, 287-294.	2.6	43
30	Speciation of volatile antimony compounds in culture headspace gases ofCryptococcus humicolus using solid phase microextraction and gas chromatography-mass spectrometry. Applied Organometallic Chemistry, 2002, 16, 287-293.	1.7	43
31	Glacial Silicic Acid Concentrations in the Southern Ocean. Science, 2010, 330, 1088-1091.	6.0	43
32	Selenium speciation in wheat grain varies in the presence of nitrogen and sulphur fertilisers. Environmental Geochemistry and Health, 2017, 39, 955-966.	1.8	43
33	Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environmental Chemistry, 2011, 8, 9.	0.7	42
34	Measurement of mercury species in sediments and soils by HPLC–ICPMS. Microchemical Journal, 2015, 121, 65-98.	2.3	42
35	Measurement of Trace Elements in Marine Environmental Samples using Solution ICPMS. Current and Future Applications. Australian Journal of Chemistry, 2003, 56, 103.	0.5	40
36	Arsenobetaine and thio-arsenic species in marine macroalgae and herbivorous animals: Accumulated through trophic transfer or produced in situ ?. Journal of Environmental Sciences, 2016, 49, 131-139.	3.2	39

#	Article	IF	CITATIONS
37	Antimony in the environment - the new global puzzle. Environmental Chemistry, 2009, 6, 93.	0.7	38
38	Importance of Subcellular Metal Partitioning and Kinetics to Predicting Sublethal Effects of Copper in Two Deposit-Feeding Organisms. Environmental Science & Technology, 2015, 49, 1806-1814.	4.6	38
39	Measurement of selenomethionine and selenocysteine in fish tissues using HPLC-ICP-MS. Microchemical Journal, 2016, 128, 248-257.	2.3	38
40	The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring. Journal of Environmental Monitoring, 2005, 7, 208.	2.1	37
41	The accumulation of Zn, Se, Cd, and Pb and physiological condition of Anadara trapezia transplanted to a contamination gradient in Lake Macquarie, New South Wales, Australia. Marine Environmental Research, 2007, 64, 54-78.	1.1	37
42	Arsenic Species in a Rocky Intertidal Marine Food Chain in NSW, Australia, revisited. Environmental Chemistry, 2006, 3, 304.	0.7	36
43	Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton <i>Dunaliella tertiolecta</i> . Botanica Marina, 2010, 53, 377-386.	0.6	36
44	An evaluation of the use of reptile dermal scutes as a non-invasive method to monitor mercury concentrations in the environment. Chemosphere, 2015, 119, 163-170.	4.2	35
45	Oceanic distribution of inorganic germanium relative to silicon: Germanium discrimination by diatoms. Global Biogeochemical Cycles, 2010, 24, .	1.9	34
46	Changes in proportions of arsenic species within an Ecklonia radiata food chain. Environmental Chemistry, 2008, 5, 176.	0.7	32
47	Exposure–dose–response of Anadara trapezia to metal contaminated estuarine sediments. 2. Lead spiked sediments. Aquatic Toxicology, 2012, 116-117, 79-89.	1.9	32
48	Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand. Frontiers in Microbiology, 2014, 5, 569.	1.5	32
49	Mercury concentrations in different tissues of turtle and caiman species from the Rio Purus, Amazonas, Brazil. Environmental Toxicology and Chemistry, 2015, 34, 2771-2781.	2.2	32
50	Trophic transfer of metals in a seagrass food web: Bioaccumulation of essential and non-essential metals. Marine Pollution Bulletin, 2018, 131, 468-480.	2.3	32
51	Arsenic and antimony species in surface transects and depth profiles across a frontal zone: The Chatham Rise, New Zealand. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 1971-1981.	0.6	31
52	Dimethylarsenate (DMA) exposure influences germination rates, arsenic uptake and arsenic species formation in wheat. Chemosphere, 2017, 181, 44-54.	4.2	31
53	Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300Âkm South Pacific Zonal Section (153°E–150°W). Global Biogeochemical Cycles, 2018, 32, 187-207.	1.9	31
54	Germanium incorporation into sponge spicules: Development of a proxy for reconstructing inorganic germanium and silicon concentrations in seawater. Earth and Planetary Science Letters, 2006, 243, 749-759.	1.8	30

#	Article	IF	CITATIONS
55	Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana. Environmental Chemistry, 2013, 10, 91.	0.7	30
56	Recent history of sediment metal contamination in Lake Macquarie, Australia, and an assessment of ash handling procedure effectiveness in mitigating metal contamination from coal-fired power stations. Science of the Total Environment, 2014, 490, 659-670.	3.9	30
57	Organometallics in the nearshore marine environment of Australia. Applied Organometallic Chemistry, 1990, 4, 419-437.	1.7	29
58	Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals. Nanomaterials, 2017, 7, 186.	1.9	29
59	Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism. Ecotoxicology, 2012, 21, 576-590.	1.1	28
60	Distribution and Speciation of Arsenic in Temperate Marine Saltmarsh Ecosystems. Environmental Chemistry, 2005, 2, 177.	0.7	28
61	Exposure–dose–response of Anadara trapezia to metal contaminated estuarine sediments. 1. Cadmium spiked sediments. Aquatic Toxicology, 2012, 109, 234-242.	1.9	27
62	Effects of lead-spiked sediments on freshwater bivalve, Hyridella australis: linking organism metal exposure-dose-response. Aquatic Toxicology, 2014, 149, 83-93.	1.9	27
63	Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments. Environmental Pollution, 2018, 243, 862-871.	3.7	25
64	Water quality assessment programs in Australia deciding what to measure, and how and where to use bioindicators. Environmental Monitoring and Assessment, 1990, 14, 115-130.	1.3	23
65	Germanium cycling in the waters across a frontal zone: the Chatham Rise, New Zealand. Marine Chemistry, 2003, 80, 145-159.	0.9	23
66	Mortality, condition index and cellular responses of Anadara trapezia to combined salinity and temperature stress. Journal of Experimental Marine Biology and Ecology, 2017, 497, 172-179.	0.7	23
67	Arsenic and selected elements in marine angiosperms, south-east coast, NSW, Australia. Applied Organometallic Chemistry, 2007, 21, 381-395.	1.7	21
68	Bioavailability and toxicity of zinc from contaminated freshwater sediments: Linking exposure-dose–response relationships of the freshwater bivalve Hyridella australis to zinc-spiked sediments. Aquatic Toxicology, 2014, 156, 179-190.	1.9	21
69	Selenopeptides and elemental selenium in <i>Thunbergia alata</i> after exposure to selenite: quantification method for elemental selenium. Metallomics, 2015, 7, 1056-1066.	1.0	21
70	Arsenolipid biosynthesis by the unicellular alga <i>Dunaliella tertiolecta</i> is influenced by As/P ratio in culture experiments. Metallomics, 2018, 10, 145-153.	1.0	20
71	Determination of Selenium in Marine Organisms Using Hydride Generation and Electrothermal Atomic Absorption Spectroscopy. Analytical Letters, 1983, 16, 801-810.	1.0	19
72	Product ion mass spectra of amphetamine-type substances, designer analogues, and ketamine using ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 2259-2264.	0.7	19

#	Article	IF	CITATIONS
73	Modeling food web structure and selenium biomagnification in lake macquarie, New South Wales, Australia, using stable carbon and nitrogen isotopes. Environmental Toxicology and Chemistry, 2015, 34, 608-617.	2.2	19
74	Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs. Environmental Chemistry, 2018, 15, 46.	0.7	19
75	How significant is atmospheric metal contamination from mining activity adjacent to the Tasmanian Wilderness World Heritage Area? A spatial analysis of metal concentrations using air trajectories models. Science of the Total Environment, 2019, 656, 250-260.	3.9	19
76	Use of electricity to inhibit macroinvertebrate grazing of epilithon in experimental treatments in flowing waters. Journal of the North American Benthological Society, 2000, 19, 176-185.	3.0	18
77	The freshwater bivalve <i>Corbicula australis</i> as a sentinel species for metal toxicity assessment: An in situ case study integrating chemical and biomarker analyses. Environmental Toxicology and Chemistry, 2017, 36, 709-719.	2.2	18
78	Determination of total arsenic by use of a zinc-column arsine generator. Talanta, 1982, 29, 532-534.	2.9	17
79	The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta. Journal of Applied Phycology, 2014, 26, 2129-2134.	1.5	17
80	Use of fluorescence spectroscopy for monitoring petroleum hydrocarbon contamination in estuarine and ocean waters. Bulletin of Environmental Contamination and Toxicology, 1983, 30, 413-419.	1.3	16
81	Selenium accumulation in the cockle Anadara trapezia. Environmental Pollution, 2004, 132, 203-212.	3.7	16
82	Occurrence and Speciation of Arsenic in Common Australian Coastal Polychaete Species. Environmental Chemistry, 2005, 2, 108.	0.7	16
83	Benthic sediment composition and nutrient cycling in an Intermittently Closed and Open Lake Lagoon. Journal of Marine Systems, 2009, 75, 33-45.	0.9	16
84	Recolonisation of translocated metal-contaminated sediments by estuarine macrobenthic assemblages. Ecotoxicology, 2011, 20, 706-718.	1.1	16
85	Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata. Aquatic Toxicology, 2015, 160, 22-30.	1.9	16
86	Experimental evaluation of sampling, storage and analytical protocols for measuring arsenic speciation in sulphidic hot spring waters. Microchemical Journal, 2017, 130, 162-167.	2.3	16
87	Fluorimetric determination of selenium in some marine materials after digestion with nitric and perchloric acids and co-precipitation of selenium with lanthanum hydroxide. Talanta, 1982, 29, 1117-1118.	2.9	15
88	The Use of Two Marine Gastropods, Austrocochlea constricta and Bembicium auratum, as Biomonitors of Zinc, Cadmium, and Copper Exposure: Effect of Tissue Distribution, Gender, Reproductive State, and Temporal Variation. Journal of Coastal Research, 2006, 222, 298-306.	0.1	15
89	Riparian Plant Material Inputs to the Murray River, Australia. Journal of Environmental Quality, 2007, 36, 963-974.	1.0	15
90	Effects of iron limitation on silicon uptake kinetics and elemental stoichiometry in two Southern Ocean diatoms, Eucampia antarctica and Proboscia inermis , and the temperate diatom Thalassiosira pseudonana. Limnology and Oceanography, 2017, 62, 2445-2462.	1.6	15

#	Article	IF	CITATIONS
91	Mercury Cycling in Lake Gordon and Lake Pedder, Tasmania (Australia). II: Catchment Processes. Water, Air, and Soil Pollution, 2003, 147, 25-38.	1.1	14
92	Preparation and characterization of water-soluble fractions of crude and refined oils for use in toxicity studies. Bulletin of Environmental Contamination and Toxicology, 1982, 29, 268-272.	1.3	13
93	Trace metal bioaccumulation in eight common coastal Australian polychaeta. Journal of Environmental Monitoring, 2006, 8, 1149.	2.1	13
94	ESTABLISHING CAUSE–EFFECT RELATIONSHIPS IN HYDROCARBON-CONTAMINATED SEDIMENTS USING A SUBLETHAL RESPONSE OF THE BENTHIC MARINE ALGA, ENTOMONEIS CF PUNCTULATA. Environmental Toxicology and Chemistry, 2007, 26, 163.	2.2	13
95	History of metal contamination in Lake Illawarra, NSW, Australia. Chemosphere, 2015, 119, 377-386.	4.2	13
96	The formation and fate of organoarsenic species in marine ecosystems: do existing experimental approaches appropriately simulate ecosystem complexity?. Environmental Chemistry, 2015, 12, 149.	0.7	13
97	Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia. Archives of Environmental Contamination and Toxicology, 2016, 70, 572-582.	2.1	13
98	Exposure of the freshwater bivalve Hyridella australis to metal contaminated sediments in the field and laboratory microcosms: metal uptake and effects. Ecotoxicology, 2017, 26, 415-434.	1.1	13
99	Antimony measurements in environmental matrices: seven considerations. Journal of Analytical Atomic Spectrometry, 2018, 33, 706-712.	1.6	13
100	Selenium associations in estuarine sediments: Redox effects. Water, Air, and Soil Pollution, 1997, 99, 275-282.	1.1	12
101	Developing a sentinel mollusc species for toxicity assessment: metal exposure, dose and response – laboratory v. field exposures and resident organisms. Environmental Chemistry, 2016, 13, 434.	0.7	12
102	Metal concentrations in waters, sediments and biota of the far south-east coast of New South Wales, Australia, with an emphasis on Sn, Cu and Zn used as marine antifoulant agents. Environmental Geochemistry and Health, 2019, 41, 1351-1367.	1.8	12
103	The presence of arsenobetaine in marine animals. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1985, 80, 199-201.	0.2	11
104	Exposure-dose-response of Tellina deltoidalis to metal-contaminated estuarine sediments. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2013, 158, 44-55.	1.3	11
105	Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol–water and liposome–water partition coefficients. Journal of Environmental Sciences, 2016, 49, 222-232.	3.2	11
106	Problems with the use of terracotta clay saucers as phosphorus-diffusing substrata to assess nutrient limitation of epilithic algae. Freshwater Biology, 2001, 46, 623-632.	1.2	10
107	Exposure–dose–response of Anadara trapezia to metal contaminated estuarine sediments. Aquatic Toxicology, 2012, 124-125, 152-162.	1.9	10
108	The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms. Environmental Chemistry, 2014, 11, 289.	0.7	10

#	Article	IF	CITATIONS
109	Exposure–dose–response relationships of the freshwater bivalve Hyridella australis to cadmium spiked sediments. Aquatic Toxicology, 2014, 152, 361-371.	1.9	10
110	Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia) Tj ETQqO Marine Science, 2017, 4, .	0 0 rgBT /0 1.2	Overlock 10 Tf 10
111	Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 537-557.	2.0	10
112	Mercury Cycling in Lake Gordon and Lake Pedder, Tasmania (Australia). I: In-lake Processes. Water, Air, and Soil Pollution, 2003, 147, 3-23.	1.1	9
113	Total arsenic concentrations and arsenic species present in naturally decomposing Ecklonia radiata tissues collected from various marine habitats. Journal of Applied Phycology, 2014, 26, 2193-2201.	1.5	9
114	Arsenoriboside degradation in marine systems: The use of bacteria culture incubation experiments as model systems. Chemosphere, 2014, 95, 635-638.	4.2	9
115	Volatile selenium fluxes from selenium-contaminated sediments in an Australian coastal lake. Environmental Chemistry, 2016, 13, 68.	0.7	9
116	Factors influencing arsenic concentrations and species in mangrove surface sediments from south-east NSW, Australia. Environmental Geochemistry and Health, 2017, 39, 209-219.	1.8	9
117	Measurement of As species in rice by HPLC-ICPMS after extraction with sub-critical water and hydrogen peroxide. Journal of Analytical Atomic Spectrometry, 2017, 32, 1129-1134.	1.6	9
118	Arsenic concentrations and speciation in Australian and imported rice and commercial rice products. Environmental Chemistry, 2018, 15, 387.	0.7	9
119	History of human impact on Lake Kutubu, Papua New Guinea: The geochemical signatures of oil and gas mining activities in sediments. Chemosphere, 2016, 148, 369-379.	4.2	8
120	The response of Isidorella newcombi to copper exposure: Using an integrated biological framework to interpret transcriptomic responses from RNA-seq analysis. Aquatic Toxicology, 2017, 185, 183-192.	1.9	8
121	Bioaccumulation, oxidative stress and cellular damage in the intertidal gastropod Bembicium nanum exposed to a metal contamination gradient. Marine and Freshwater Research, 2017, 68, 922.	0.7	8
122	Stratigraphy, age and correlation of two widespread Late Holocene tephras preserved within Lake Kutubu, Southern Highlands Province, Papua New Guinea. Journal of Quaternary Science, 2017, 32, 782-794.	1.1	8
123	A pilot in vivo evaluation of Sb(III) and Sb(V) genotoxicity using comet assay and micronucleus test on the freshwater fish, silver perch Bidyanus bidyanus (Mitchell, 1838). Environmental Advances, 2021, 5, 100109.	2.2	8
124	Fluorimetric Determination Of Selenium In Marine Geological Materials. Analytical Letters, 1983, 16, 491-499.	1.0	7
125	Mercury speciation in waters and sediments of Lake Murray, Papua New Guinea. Marine and Freshwater Research, 2002, 53, 825.	0.7	7
126	Transport and fate of metal contamination in estuaries: Using a model network to predict the contributions of physical and chemical factors. Chemosphere, 2016, 153, 227-236.	4.2	7

#	Article	IF	CITATIONS
127	Putting the silicon cycle in a bag: Field and mesocosm observations of silicon isotope fractionation in subtropical waters east of New Zealand. Marine Chemistry, 2019, 213, 1-12.	0.9	7
128	Preparation of water soluble fractions of crude oils for toxicity studies. Bulletin of Environmental Contamination and Toxicology, 1986, 36, 226-229.	1.3	6
129	Exposure–dose–response of Tellina deltoidalis to metal contaminated estuarine sediments 2. Lead spiked sediments. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 159, 52-61.	1.3	6
130	Comparison of metal bioaccumulation in crop types and consumable parts between two growth periods. Integrated Environmental Assessment and Management, 2022, 18, 1056-1071.	1.6	6
131	Determination of Methylated Arsenic Species by Use of a Zinc Column Arsine Generator. Spectroscopy Letters, 1983, 16, 865-870.	0.5	5
132	Determination of Tellurium by Electrothermal Atomic Absorption Spectroscopy: Isolation of Tellurium from Potential Interferences. Analytical Letters, 1984, 17, 979-991.	1.0	5
133	A comparison of atmospheric pressure chemical ionization and electrospray ionization in testing for amphetamine-type substances and ketamine using ultra-performance liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 2777-2780.	0.7	5
134	Response of the hairy mussel Trichomya hirsuta to sediment-metal contamination in the presence of a bioturbator. Marine Pollution Bulletin, 2014, 88, 180-187.	2.3	5
135	Exposure-dose-response of Tellina deltoidalis to contaminated estuarine sediments 3. Selenium spiked sediments. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 166, 34-43.	1.3	5
136	Transformation of arsenic lipids in decomposing Ecklonia radiata. Journal of Applied Phycology, 2019, 31, 3979-3987.	1.5	5
137	Sensitivity of Freshwater Australian Bass (Macquaria novemaculeata) and Silver Perch (Bidyanus) Tj ETQq1 1 0. Archives of Environmental Contamination and Toxicology, 2021, 81, 621-636.	784314 rgł 2.1	3T /Overlock 4
138	Mercury cycling in Australian estuaries and near shore coastal ecosystems: Triggers for management. Elementa, 2020, 8, .	1.1	4
139	The spatial legacy of Australian mercury contamination in the sediment of the Molonglo River. Elementa, 2020, 8, .	1.1	4
140	The role of speciation in environmental chemistry and the case for quality criteria. Environmental Chemistry, 2009, 6, 273.	0.7	3
141	Measurement of Total Se and Se Species in Seafood by Quadrupole Inductively Coupled Plasma Mass Spectrometry, Electrothermal Atomization Atomic Absorption Spectrometry, and High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry. , 0, , 643-669.		2
142	Do laboratory toxicity tests replicate "real world―exposures?. Integrated Environmental Assessment and Management, 2013, 9, 348-349.	1.6	2
143	Selenium Associations in Estuarine Sediments: Redox Effects. , 1997, , 275-282.		2
144	Ecotoxicological Effects of an Arsenic Remediation Method on Three Freshwater Organisms—Lemna disperma, Chlorella sp. CE-35 and Ceriodaphnia cf. dubia. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	1

#	Article	IF	CITATIONS
145	Inorganic Arsenic Concentrations in Wheat Chaff Exceed Those in Wheat Grain. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	1
146	Stable isotope analysis to detect copper (Cu) accumulation in species with high endogenous Cu concentrations: linking Cu accumulation with toxic effects in the gastropod Bembicium nanum. Marine and Freshwater Research, 2017, 68, 2087.	0.7	1
147	The Response of the Planorbid Snail Isidorella newcombi to Chronic Copper Exposure Over a 28-Day Period: Linking Mortality, Cellular Biomarkers, and Reproductive Responses. Archives of Environmental Contamination and Toxicology, 2020, 79, 391-405.	2.1	1
148	Editorial. Environmental Monitoring and Assessment, 1990, 14, v-v.	1.3	0
149	Selenium Associations in Estuarine Sediments: Redox Effects. Water, Air, and Soil Pollution, 1997, 99, 275-282.	1.1	0
150	Measurement of Total Arsenic and Arsenic Species in Seafood by Q ICP-MS. , 0, , 567-595.		0
151	Band width selection data from Near Infra-red Spectral (NIRS) quantitative modelling of energy storage components (protein, lipid, glycogen) for single and multi-bivalve species models. Data in Brief, 2018, 18, 1509-1512.	0.5	0
152	The use of zirconium stationary phase to determine the four major arsenoriboses concentrations in marine organisms by high-performance liquid chromatography coupled to inductively coupled plasma–mass spectrometry. Microchemical Journal, 2019, 150, 104099.	2.3	0
153	Seasonal Bioenergetic Changes in Saccostrea glomerata from Two Age Cohorts Farmed in Clyde River, Nsw, Australia. Journal of Shellfish Research, 2019, 38, 327.	0.3	0