Siu-Lung Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227683/publications.pdf Version: 2024-02-01

SULLUNC CHAN

#	Article	IF	CITATIONS
1	Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Frontiers in Cardiovascular Medicine, 2022, 9, 841928.	1.1	7
2	Vascular smooth muscle cell c-Fos is critical for foam cell formation and atherosclerosis. Metabolism: Clinical and Experimental, 2022, 132, 155213.	1.5	20
3	Epsins Regulate Cholesterol Uptake and Efflux in Macrophages. FASEB Journal, 2021, 35, .	0.2	Ο
4	Non-alcoholic Steatohepatitis Pathogenesis, Diagnosis, and Treatment. Frontiers in Cardiovascular Medicine, 2021, 8, 742382.	1.1	22
5	Impact of Acute and Chronic Hypertension on Changes in Pial Collateral Tone In Vivo During Transient Ischemia. Hypertension, 2020, 76, 1019-1026.	1.3	7
6	Endocytic Adaptors in Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 624159.	1.8	16
7	Transient receptor potential vanilloidâ€4 channels are involved in diminished myogenic tone in brain parenchymal arterioles in response to chronic hypoperfusion in mice. Acta Physiologica, 2019, 225, e13181.	1.8	6
8	Effect of TTC Treatment on Immunohistochemical Quantification of Collagen IV in Rat Brains after Stroke. Translational Stroke Research, 2018, 9, 499-505.	2.3	6
9	Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinateâ,,¢) in spontaneously hypertensive rats. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 755-766.	2.4	33
10	The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2129-2149.	2.4	202
11	Inhibition of PAI (Plasminogen Activator Inhibitor)-1 Improves Brain Collateral Perfusion and Injury After Acute Ischemic Stroke in Aged Hypertensive Rats. Stroke, 2018, 49, 1969-1976.	1.0	37
12	Abstract WP407: Function and Reactivity of Pial Collaterals In Vivo in Normotensive and Hypertensive Rats: Response to Ischemia and Reperfusion. Stroke, 2018, 49, .	1.0	0
13	Effect of hypertension and peroxynitrite decomposition with FeTMPyP on CBF and stroke outcome. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1276-1285.	2.4	19
14	Treatment with low dose fasudil for acute ischemic stroke in chronic hypertension. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3262-3270.	2.4	7
15	Abstract 62: Sanguinate TM Opens Collaterals, Improves Reperfusion and Decreases Infarct in Hypertensive Rats. Stroke, 2017, 48, .	1.0	0
16	Pial Collateral Reactivity During Hypertension and Aging. Stroke, 2016, 47, 1618-1625.	1.0	69
17	Roles of Caveolin-1 in Angiotensin II–Induced Hypertrophy and Inward Remodeling of Cerebral Pial Arterioles. Hypertension, 2016, 67, 623-629.	1.3	19
18	Abstract 223: Leptomeningeal Arteriole Vasoconstriction during Hypertension: Targeting Pial Collaterals in Stroke Treatment. Stroke, 2016, 47, .	1.0	0

SIU-LUNG CHAN

#	Article	IF	CITATIONS
19	Effect of hypertension and carotid occlusion on brain parenchymal arteriole structure and reactivity. Journal of Applied Physiology, 2015, 119, 817-823.	1.2	19
20	Epidermal Growth Factor Receptor Is Critical For Angiotensin II–Mediated Hypertrophy in Cerebral Arterioles. Hypertension, 2015, 65, 806-812.	1.3	31
21	Conducted Vasodilation in Brain Parenchymal Arterioles is Impaired during Chronic Hypertension. FASEB Journal, 2015, 29, 949.7.	0.2	2
22	Magnesium Sulfate Treatment Reverses Seizure Susceptibility and Decreases Neuroinflammation in a Rat Model of Severe Preeclampsia. PLoS ONE, 2014, 9, e113670.	1.1	81
23	Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity. Journal of Applied Physiology, 2014, 117, 53-59.	1.2	40
24	Postischemic Reperfusion Causes Smooth Muscle Calcium Sensitization and Vasoconstriction of Parenchymal Arterioles. Stroke, 2014, 45, 2425-2430.	1.0	49
25	The effect of experimental preeclampsia on cerebral blood flow autoregulation and cerebrovascular function (680.22). FASEB Journal, 2014, 28, 680.22.	0.2	0
26	Abstract 133: Inhibition of TRPV4 is Protective of the Brain and Cerebral Circulation During Ischemic Stroke, 2014, 45, .	1.0	0
27	Nox2 Deficiency Prevents Hypertension-Induced Vascular Dysfunction and Hypertrophy in Cerebral Arterioles. International Journal of Hypertension, 2013, 2013, 1-8.	0.5	21
28	Inhibition of PPARÎ ³ during rat pregnancy causes intrauterine growth restriction and attenuation of uterine vasodilation. Frontiers in Physiology, 2013, 4, 184.	1.3	20
29	Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB Journal, 2013, 27, 3917-3927.	0.2	44
30	Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles. Frontiers in Physiology, 2013, 4, 133.	1.3	29
31	Effect of Pregnancy and Nitric Oxide on the Myogenic Vasodilation of Posterior Cerebral Arteries and the Lower Limit of Cerebral Blood Flow Autoregulation. Reproductive Sciences, 2013, 20, 1046-1054.	1.1	19
32	Treatment of cerebral small vessel disease with relaxin. FASEB Journal, 2013, 27, 709.1.	0.2	0
33	Abstract WP440: Relaxin Selectively Affects Brain Parenchymal Arteriolar Structure during Hypertension. Stroke, 2013, 44, .	1.0	0
34	Effect of Pregnancy on Autoregulation of Cerebral Blood Flow in Anterior Versus Posterior Cerebrum. Hypertension, 2012, 60, 705-711.	1.3	49
35	DETERMINATION OF PPARÎ ³ ACTIVITY IN ADIPOSE TISSUE AND SPLEEN. Journal of Immunoassay and Immunochemistry, 2012, 33, 314-324.	0.5	5
36	Cerebral vascular adaptation to pregnancy and its role in the neurological complications of eclampsia. Journal of Applied Physiology, 2011, 110, 329-339.	1.2	97

SIU-LUNG CHAN

#	Article	IF	CITATIONS
37	Relaxin causes selective outward remodeling of brain parenchymal arterioles <i>via</i> activation of peroxisome proliferatorâ€activated receptorâ€i³. FASEB Journal, 2011, 25, 3229-3239.	0.2	52
38	Effect of PPARÎ ³ Inhibition during Pregnancy on Posterior Cerebral Artery Function and Structure. Frontiers in Physiology, 2010, 1, 130.	1.3	21
39	Inhibition of PPARÎ ³ during pregnancy causes inward remodeling of brain parenchymal arterioles. FASEB Journal, 2010, 24, 979.4.	0.2	1
40	Impact of Chronic Treatment With Red Wine Polyphenols (RWP) on Cerebral Arterioles in the Spontaneous Hypertensive Rat. Journal of Cardiovascular Pharmacology, 2008, 51, 304-310.	0.8	27
41	Red Wine Polyphenols Improve Endothelium-dependent Dilation in Rat Cerebral Arterioles. Journal of Cardiovascular Pharmacology, 2008, 51, 553-558.	0.8	19
42	Effects of polysaccharide peptide (PSP) from Coriolus versicolor on the pharmacokinetics of cyclophosphamide in the rat and cytotoxicity in HepG2 cells. Food and Chemical Toxicology, 2006, 44, 689-694.	1.8	35
43	Polysaccharide peptides from COV-1 strain of Coriolus versicolor inhibit tolbutamide 4-hydroxylation in the rat in vitro and in vivo. Food and Chemical Toxicology, 2006, 44, 1414-1423.	1.8	12
44	Modulation of antipyrine clearance by polysaccharide peptide (PSP) isolated from Coriolus versicolor in the rat. Food and Chemical Toxicology, 2006, 44, 1607-1612.	1.8	12
45	Polysaccharide peptides from COV-1 strain of Coriolus versicolor induce hyperalgesia via inflammatory mediator release in the mouse. Life Sciences, 2006, 78, 2463-2470.	2.0	31
46	Constrictor and Dilator Effects of Angiotensin II on Cerebral Arterioles. Stroke, 2005, 36, 2691-2695.	1.0	41