
## Simona Federica Spampinato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227625/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Decreased Astrocytic CCL2 Accounts for BAF-312 Effect on PBMCs Transendothelial Migration<br>Through a Blood Brain Barrier in Vitro Model. Journal of NeuroImmune Pharmacology, 2022, 17,<br>427-436. | 2.1 | 7         |
| 2  | CNS-Sparing Histamine H3 Receptor Antagonist as a Candidate to Prevent the Diabetes-Associated<br>Gastrointestinal Symptoms. Biomolecules, 2022, 12, 184.                                             | 1.8 | 5         |
| 3  | Sphingosine-1-phosphate and Sphingosine-1-phosphate receptors in the cardiovascular system: pharmacology and clinical implications. Advances in Pharmacology, 2022, , 95-139.                         | 1.2 | 3         |
| 4  | An In Vitro Model of the Blood–Brain Barrier to Study Alzheimer's Disease: The Role of β-Amyloid and<br>Its Influence on PBMC Infiltration. Methods in Molecular Biology, 2022, , 333-352.            | 0.4 | 2         |
| 5  | Microglial polarization differentially affects neuronal vulnerability to the β-amyloid protein:<br>Modulation by melatonin. Biochemical Pharmacology, 2022, 202, 115151.                              | 2.0 | 4         |
| 6  | Protective effect of the sphingosine-1 phosphate receptor agonist siponimod on disrupted blood brain barrier function. Biochemical Pharmacology, 2021, 186, 114465.                                   | 2.0 | 20        |
| 7  | SIRT1-Dependent Upregulation of BDNF in Human Microglia Challenged with Aβ: An Early but Transient<br>Response Rescued by Melatonin. Biomedicines, 2021, 9, 466.                                      | 1.4 | 16        |
| 8  | Molecular Aspects of Cellular Dysfunction in Alzheimer's Disease: The Need for a Holistic View of the<br>Early Pathogenesis. Biomolecules, 2021, 11, 1807.                                            | 1.8 | 4         |
| 9  | Reciprocal Interplay Between Astrocytes and CD4+ Cells Affects Blood-Brain Barrier and Neuronal Function in Response to β Amyloid. Frontiers in Molecular Neuroscience, 2020, 13, 120.                | 1.4 | 12        |
| 10 | SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence.<br>Biomolecules, 2020, 10, 364.                                                                | 1.8 | 24        |
| 11 | The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals, 2020, 13, 60.                                                                                          | 1.7 | 180       |
| 12 | β-amyloid and Oxidative Stress: Perspectives in Drug Development. Current Pharmaceutical Design,<br>2020, 25, 4771-4781.                                                                              | 0.9 | 37        |
| 13 | The Ambiguous Role of Microglia in Aî² Toxicity: Chances for Therapeutic Intervention. Current<br>Neuropharmacology, 2020, 18, 446-455.                                                               | 1.4 | 16        |
| 14 | Early compensatory responses against neuronal injury: A new therapeutic window of opportunity for<br>Alzheimer's Disease?. CNS Neuroscience and Therapeutics, 2019, 25, 5-13.                         | 1.9 | 43        |
| 15 | Astrocytes Modify Migration of PBMCs Induced by β-Amyloid in a Blood-Brain Barrier in vitro Model.<br>Frontiers in Cellular Neuroscience, 2019, 13, 337.                                              | 1.8 | 15        |
| 16 | Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1. Cells, 2019, 8, 64.                                                                        | 1.8 | 87        |
| 17 | Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood–Brain<br>Barrier Integrity. Frontiers in Pharmacology, 2019, 10, 1346.                                       | 1.6 | 55        |
| 18 | Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacological Research, 2018, 130, 374-384.                                          | 3.1 | 126       |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Metabotropic Glutamate Receptors in Glial Cells: A New Potential Target for Neuroprotection?.<br>Frontiers in Molecular Neuroscience, 2018, 11, 414.                                                        | 1.4 | 79        |
| 20 | The contribution of microglia to early synaptic compensatory responses that precede β-amyloid-induced neuronal death. Scientific Reports, 2018, 8, 7297.                                                    | 1.6 | 22        |
| 21 | Astrocytes contribute to Aβâ€induced blood–brain barrier damage through activation of endothelial<br><scp>MMP</scp> 9. Journal of Neurochemistry, 2017, 142, 464-477.                                       | 2.1 | 60        |
| 22 | Estrogen and Alzheimer's disease: Still an attractive topic despite disappointment from early clinical results. European Journal of Pharmacology, 2017, 817, 51-58.                                         | 1.7 | 74        |
| 23 | Effects of neuromyelitis optica–IgG at the blood–brain barrier in vitro. Neurology: Neuroimmunology<br>and NeuroInflammation, 2017, 4, e311.                                                                | 3.1 | 153       |
| 24 | Shedding of Microvesicles from Microglia Contributes to the Effects Induced by Metabotropic Glutamate Receptor 5 Activation on Neuronal Death. Frontiers in Pharmacology, 2017, 8, 812.                     | 1.6 | 22        |
| 25 | Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by<br>Transforming-Growth-Factor-β1. Frontiers in Pharmacology, 2016, 7, 389.                                                | 1.6 | 42        |
| 26 | Early ?-Amyloid-induced Synaptic Dysfunction Is Counteracted by Estrogen in Organotypic Hippocampal<br>Cultures. Current Alzheimer Research, 2016, 13, 631-640.                                             | 0.7 | 10        |
| 27 | Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes.<br>Frontiers in Cellular Neuroscience, 2015, 8, 462.                                                         | 1.8 | 18        |
| 28 | High mobility group box 1 contributes to wound healing induced by inhibition of dipeptidylpeptidase 4 in cultured keratinocytes. Frontiers in Pharmacology, 2015, 6, 126.                                   | 1.6 | 26        |
| 29 | Sphingosine 1-phosphate signaling at the blood–brain barrier. Trends in Molecular Medicine, 2015, 21,<br>354-363.                                                                                           | 3.5 | 109       |
| 30 | Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?. PLoS ONE, 2015, 10, e0133392. | 1.1 | 72        |
| 31 | Novel insights into cell-cell interactions at the blood-brain barrier revealed by a fully-human flow-based in vitro model. Journal of Neuroimmunology, 2014, 275, 32.                                       | 1.1 | Ο         |
| 32 | Dual Effect of 17β-Estradiol on NMDA-Induced Neuronal Death: Involvement of Metabotropic Glutamate<br>Receptor 1. Endocrinology, 2012, 153, 5940-5948.                                                      | 1.4 | 9         |
| 33 | Estrogen Receptors and Type 1 Metabotropic Glutamate Receptors Are Interdependent in Protecting Cortical Neurons against Î <sup>2</sup> -Amyloid Toxicity. Molecular Pharmacology, 2012, 81, 12-20.         | 1.0 | 31        |
| 34 | Metabotropic glutamate receptors in neurodegeneration/neuroprotection: Still a hot topic?.<br>Neurochemistry International, 2012, 61, 559-565.                                                              | 1.9 | 66        |
| 35 | Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell and<br>Tissue Research, 2012, 347, 291-301.                                                                  | 1.5 | 96        |
| 36 | Hyperalgesic Activity of Kisspeptin in Mice. Molecular Pain, 2011, 7, 1744-8069-7-90.                                                                                                                       | 1.0 | 15        |

| #  | Article                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Alzheimer's disease: brain expression of a metabolic disorder?. Trends in Endocrinology and<br>Metabolism, 2010, 21, 537-544. | 3.1 | 39        |