Qinglin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Applied Materials & Interfaces, 2018, 10, 27987-28002.	4.0	420
2	Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules, 2013, 14, 1529-1540.	2.6	392
3	Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustainable Chemistry and Engineering, 2015, 3, 821-832.	3.2	379
4	Electrospun Bio-Nanocomposite Scaffolds for Bone Tissue Engineering by Cellulose Nanocrystals Reinforcing Maleic Anhydride Grafted PLA. ACS Applied Materials & Interfaces, 2013, 5, 3847-3854.	4.0	292
5	Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal, 2014, 251, 17-24.	6.6	290
6	Cellulose Nanoparticles as Modifiers for Rheology and Fluid Loss in Bentonite Water-based Fluids. ACS Applied Materials & Interfaces, 2015, 7, 5006-5016.	4.0	283
7	A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon, 2019, 149, 1-18.	5.4	280
8	Preparation and properties of recycled HDPE/natural fiber composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1664-1674.	3.8	265
9	Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology, 2010, 101, 2529-2536.	4.8	264
10	Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. Journal of Colloid and Interface Science, 2011, 353, 116-123.	5.0	256
11	Electrospun Polyethylene Oxide/Cellulose Nanocrystal Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. Biomacromolecules, 2011, 12, 2617-2625.	2.6	255
12	Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technology, 2010, 101, 5685-5692.	4.8	254
13	Effect of high-pressure homogenization on particle size and film properties of soy protein isolate. Industrial Crops and Products, 2013, 43, 538-544.	2.5	246
14	Transitional properties of starch colloid with particle size reduction from micro- to nanometer. Journal of Colloid and Interface Science, 2009, 339, 117-124.	5.0	233
15	A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids and Surfaces B: Biointerfaces, 2011, 84, 155-162.	2.5	215
16	Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Industrial Crops and Products, 2008, 28, 63-72.	2.5	207
17	Wood-fiber/high-density-polyethylene composites: Coupling agent performance. Journal of Applied Polymer Science, 2005, 96, 93-102.	1.3	206
18	High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: Dynamic rheological properties and hydrogel formation mechanism. Carbohydrate Polymers, 2014, 102, 306-316.	5.1	202

#	Article	IF	CITATIONS
19	Structure and rheology of nanocrystalline cellulose. Carbohydrate Polymers, 2011, 84, 316-322.	5.1	192
20	Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose, 2012, 19, 1173-1187.	2.4	192
21	Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers, 2012, 90, 301-308.	5.1	188
22	A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydrate Polymers, 2020, 250, 116905.	5.1	184
23	An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes. Electrochimica Acta, 2019, 318, 660-672.	2.6	166
24	Electrospun Core–Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Applied Materials & Interfaces, 2019, 11, 44624-44635.	4.0	164
25	Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Industrial Crops and Products, 2019, 128, 94-107.	2.5	163
26	Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydrate Polymers, 2013, 94, 773-781.	5.1	154
27	Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydrate Polymers, 2019, 206, 289-301.	5.1	154
28	Influence of nanoclay on properties of HDPE/wood composites. Journal of Applied Polymer Science, 2007, 106, 3958-3966.	1.3	153
29	Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Industrial & Engineering Chemistry Research, 2016, 55, 133-143.	1.8	152
30	Effects of nanocellulose on the structure and properties of poly(vinyl alcohol)-borax hybrid foams. Cellulose, 2017, 24, 4433-4448.	2.4	149
31	Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. Advanced Materials, 2021, 33, e2006052.	11.1	143
32	Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 50281-50297.	4.0	125
33	Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose, 2013, 20, 2947-2958.	2.4	123
34	Effect of a novel clay/silica nanocomposite on water-based drilling fluids: Improvements in rheological and filtration properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 339-350.	2.3	119
35	Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: Morphology, crystallinity and percentage estimation. Carbohydrate Polymers, 2015, 133, 438-447.	5.1	117
36	Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization. Carbohydrate Polymers, 2016, 147, 155-164.	5.1	116

#	Article	IF	CITATIONS
37	Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. Journal of Colloid and Interface Science, 2021, 597, 171-181.	5.0	114
38	Highly Stretchable and Self-Healing Strain Sensors Based on Nanocellulose-Supported Graphene Dispersed in Electro-Conductive Hydrogels. Nanomaterials, 2019, 9, 937.	1.9	112
39	Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose, 2015, 22, 1123-1133.	2.4	108
40	Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers. Materials, 2016, 9, 523.	1.3	103
41	Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydrate Polymers, 2016, 136, 485-492.	5.1	103
42	ZIF-67@Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. Journal of Energy Chemistry, 2021, 52, 170-180.	7.1	98
43	Water-based bentonite drilling fluids modified by novel biopolymer for minimizing fluid loss and formation damage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 58-66.	2.3	93
44	Maleated wood-fiber/high-density-polyethylene composites: Coupling mechanisms and interfacial characterization. Composite Interfaces, 2005, 12, 125-140.	1.3	92
45	Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products, 2015, 76, 355-363.	2.5	92
46	Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose, 2021, 28, 4295-4311.	2.4	92
47	Enhancing mechanical properties of poly(lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Industrial Crops and Products, 2018, 112, 449-459.	2.5	91
48	Mechanical, thermal expansion, and flammability properties of co-extruded wood polymer composites with basalt fiber reinforced shells. Materials & Design, 2014, 60, 334-342.	5.1	85
49	Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose, 2018, 25, 1103-1115.	2.4	85
50	3D Printed Ti ₃ C ₂ T <i>_x</i> MXene/Cellulose Nanofiber Architectures for Solid‧tate Supercapacitors: Ink Rheology, 3D Printability, and Electrochemical Performance. Advanced Functional Materials, 2022, 32, .	7.8	85
51	Rheology, curing temperature and mechanical performance of oil well cement: Combined effect of cellulose nanofibers and graphene nano-platelets. Materials and Design, 2017, 114, 92-101.	3.3	83
52	Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Carbohydrate Polymers, 2020, 246, 116548.	5.1	82
53	Self-Healable Electro-Conductive Hydrogels Based on Core-Shell Structured Nanocellulose/Carbon Nanotubes Hybrids for Use as Flexible Supercapacitors. Nanomaterials, 2020, 10, 112.	1.9	80
54	Soy Protein Isolate As Fluid Loss Additive in Bentonite–Water-Based Drilling Fluids. ACS Applied Materials & Interfaces, 2015, 7, 24799-24809.	4.0	78

#	Article	IF	CITATIONS
55	Cationic surface modification of cellulose nanocrystals: Toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer, 2016, 107, 200-210.	1.8	78
56	A Chemically Selfâ€Charging Flexible Solidâ€State Zincâ€Ion Battery Based on VO ₂ Cathode and Polyacrylamide–Chitin Nanofiber Hydrogel Electrolyte. Advanced Energy Materials, 2021, 11, 2003902.	10.2	77
57	Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chemical Engineering Journal, 2021, 405, 126737.	6.6	76
58	High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance. Materials, 2013, 6, 4122-4138.	1.3	75
59	A Skin-Inspired Stretchable, Self-Healing and Electro-Conductive Hydrogel with a Synergistic Triple Network for Wearable Strain Sensors Applied in Human-Motion Detection. Nanomaterials, 2019, 9, 1737.	1.9	74
60	Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: micro and nano scale. Cellulose, 2019, 26, 861-876.	2.4	73
61	Performance of low solid bentonite drilling fluids modified by cellulose nanoparticles. Journal of Natural Gas Science and Engineering, 2016, 34, 1403-1411.	2.1	70
62	The influence of grafted cellulose nanofibers and postextrusion annealing treatment on selected properties of poly(lactic acid) filaments for 3D printing. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 847-855.	2.4	70
63	Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 59142-59153.	4.0	70
64	pH-Responsive Water-Based Drilling Fluids Containing Bentonite and Chitin Nanocrystals. ACS Sustainable Chemistry and Engineering, 2018, 6, 3783-3795.	3.2	69
65	Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene) Tj ETQq1 1 C).784314 4.8	rgBT_/Overl <mark>o</mark> c
66	Transitional Properties of Cotton Fibers from Cellulose I to Cellulose II Structure. BioResources, 2013, 8, .	0.5	67
67	A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg _{0.23} V ₂ O ₅ ·1.0H ₂ O cathode. Journal of Materials Chemistry A, 2020, 8, 18327-18337.	5.2	66
68	TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose, 2021, 28, 1469-1488.	2.4	65
69	Dynamic rheology studies of in situ polymerization process of polyacrylamide–cellulose nanocrystal composite hydrogels. Colloid and Polymer Science, 2011, 289, 247-255.	1.0	63
70	Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohydrate Polymers, 2016, 153, 445-454.	5.1	63
71	Surface-Chemistry-Tuned Cellulose Nanocrystals in a Bentonite Suspension for Water-Based Drilling Fluids. ACS Applied Nano Materials, 2018, 1, 7039-7051.	2.4	61
72	UV-initiated crosslinking of electrospun poly(ethylene oxide) nanofibers with pentaerythritol triacrylate: Effect of irradiation time and incorporated cellulose nanocrystals. Carbohydrate Polymers, 2012, 87, 1779-1786.	5.1	59

#	Article	IF	CITATIONS
73	A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. Journal of Hazardous Materials, 2013, 263, 334-341.	6.5	59
74	Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement. Scientific Reports, 2016, 6, 31654.	1.6	59
75	Physiochemical, optical and mechanical properties of poly(lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Advances, 2016, 6, 9438-9445.	1.7	59
76	Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property. Carbohydrate Polymers, 2018, 189, 331-341.	5.1	59
77	The influences of fiber feature and polymer melt index on mechanical properties of sugarcane fiber/polymer composites. Journal of Applied Polymer Science, 2006, 102, 5607-5619.	1.3	56
78	Recent advances in metal organic framework and cellulose nanomaterial composites. Coordination Chemistry Reviews, 2022, 461, 214496.	9.5	55
79	Investigation of Amphiphilic Polypeptoid-Functionalized Halloysite Nanotubes as Emulsion Stabilizer for Oil Spill Remediation. ACS Applied Materials & amp; Interfaces, 2019, 11, 27944-27953.	4.0	54
80	Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. International Journal of Biological Macromolecules, 2021, 172, 330-340.	3.6	54
81	Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis. Materials, 2017, 10, 80.	1.3	53
82	Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as a base matrix. RSC Advances, 2016, 6, 73879-73886.	1.7	52
83	Thermoresponsive Copolymer Poly(<i>N</i> -Vinylcaprolactam) Grafted Cellulose Nanocrystals: Synthesis, Structure, and Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 7439-7447.	3.2	51
84	Mechanical and physical properties of core–shell structured wood plastic composites: Effect of shells with hybrid mineral and wood fillers. Composites Part B: Engineering, 2013, 45, 1040-1048.	5.9	49
85	Using Cellulose Nanocrystals as a Sustainable Additive to Enhance Hydrophilicity, Mechanical and Thermal Properties of Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blend. ACS Sustainable Chemistry and Engineering, 2015, 3, 574-582.	3.2	49
86	Layered ferric vanadate nanosheets as a high-rate NH4+ storage electrode. Electrochimica Acta, 2020, 360, 137008.	2.6	46
87	Overcoming Salt Contamination of Bentonite Water-Based Drilling Fluids with Blended Dual-Functionalized Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2020, 8, 11569-11578.	3.2	46
88	Coextruded polyethylene and woodâ€flour composite: Effect of shell thickness, wood loading, and core quality. Journal of Applied Polymer Science, 2010, 118, 3594-3601.	1.3	44
89	Highly recyclable and super-tough hydrogel mediated by dual-functional TiO2 nanoparticles toward efficient photodegradation of organic water pollutants. Journal of Colloid and Interface Science, 2020, 564, 99-112.	5.0	44
90	Assembly of Polyacrylamide-Sodium Alginate-Based Organic-Inorganic Hydrogel with Mechanical and Adsorption Properties. Polymers, 2019, 11, 1239.	2.0	43

#	Article	IF	CITATIONS
91	3D printed poly(lactic acid) composites with grafted cellulose nanofibers: Effect of nanofiber and post-fabrication annealing treatment on composite flexural properties. Additive Manufacturing, 2019, 28, 621-628.	1.7	40
92	Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: Basic membrane property and battery performance. Journal of Power Sources, 2020, 454, 227878.	4.0	40
93	Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites. Materials, 2014, 7, 16-29.	1.3	39
94	Synthesis-Free Phase-Selective Gelator for Oil-Spill Remediation. ACS Applied Materials & Interfaces, 2017, 9, 33549-33553.	4.0	39
95	Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 2021, 259, 117764.	5.1	38
96	Phase structure and properties of poly(ethylene terephthalate)/highâ€density polyethylene based on recycled materials. Journal of Applied Polymer Science, 2009, 113, 1710-1719.	1.3	37
97	Nanotechnology in Agriculture. ACS Symposium Series, 2016, , 233-242.	0.5	37
98	Thermoresponsive poly(poly(ethylene glycol) methylacrylate)s grafted cellulose nanocrystals through SI-ATRP polymerization. Cellulose, 2017, 24, 4189-4203.	2.4	37
99	Effects of cellulose/salicylaldehyde thiosemicarbazone complexes on PVA based hydrogels: Portable, reusable, and high-precision luminescence sensing of Cu2+. Journal of Hazardous Materials, 2021, 401, 123798.	6.5	37
100	Water-Redispersible Cellulose Nanofiber and Polyanionic Cellulose Hybrids for High-Performance Water-Based Drilling Fluids. Industrial & Engineering Chemistry Research, 2020, 59, 14352-14363.	1.8	36
101	Poly(vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose, 2015, 22, 2431-2441.	2.4	34
102	Thermothickening Drilling Fluids Containing Bentonite and Dual-Functionalized Cellulose Nanocrystals. Energy & Fuels, 2020, 34, 8206-8215.	2.5	34
103	A cellulose nanofiber–polyacrylamide hydrogel based on a co-electrolyte system for solid-state zinc ion batteries to operate at extremely cold temperatures. Journal of Materials Chemistry A, 2021, 9, 25651-25662.	5.2	34
104	Structure and thermal properties of tar from gasification of agricultural crop residue. Journal of Thermal Analysis and Calorimetry, 2015, 119, 27-35.	2.0	33
105	Adsorption of Cu ²⁺ ions with poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€methacrylic) Tj ET	Qq1,10.7	84314 rgBT
106	Chitosan colloidal suspension composed of mechanically disassembled nanofibers. Journal of Colloid and Interface Science, 2011, 354, 637-643.	5.0	31
107	Cellulose nanofibers from rapidly microwave-delignified energy cane bagasse and their application in drilling fluids as rheology and filtration modifiers. Industrial Crops and Products, 2020, 150, 112378.	2.5	31
108	Preparation of temperature†and pHâ€sensitive, stimuliâ€responsive poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€methacrylic acid) nanoparticles. Journal of Applied Polymer Science, 2008, 108, 2226-2232.	1.3	30

#	Article	IF	CITATIONS
109	Preparation and properties of recycled HDPE/clay hybrids. Journal of Applied Polymer Science, 2007, 103, 3056-3063.	1.3	29
110	Recent Development in Applications of Cellulose Nanocrystals for Advanced Polymer-Based Nanocomposites by Novel Fabrication Strategies. , 0, , .		29
111	Molecular association of adsorbed water with lignocellulosic materials examined by micro-FTIR spectroscopy. International Journal of Biological Macromolecules, 2016, 83, 117-125.	3.6	29
112	Thermal decomposition of fire-retarded wood flour/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2016, 123, 309-318.	2.0	28
113	Electrospun Cellulose Nanocrystals/Chitosan/Polyvinyl Alcohol Nanofibrous Films and their Exploration to Metal Ions Adsorption. Polymers, 2018, 10, 1046.	2.0	28
114	Fast Microwave Synthesis of Hierarchical Porous Carbons from Waste Palm Boosted by Activated Carbons for Supercapacitors. Nanomaterials, 2019, 9, 405.	1.9	28
115	High density polyethylene and poly(ethylene terephthalate) in situ sub-micro-fibril blends as a matrix for wood plastic composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 73-78.	3.8	27
116	Reusable and crossâ€linked cellulose nanofibrils aerogel for the removal of heavy metal ions. Polymer Composites, 2018, 39, 4442-4451.	2.3	27
117	Surface wetting behavior of nanocellulose-based composite films. Cellulose, 2018, 25, 5071-5087.	2.4	27
118	Spider-web-inspired membrane reinforced with sulfhydryl-functionalized cellulose nanocrystals for oil/water separation. Carbohydrate Polymers, 2022, 282, 119049.	5.1	26
119	The Effect of Chemical and High-Pressure Homogenization Treatment Conditions on the Morphology of Cellulose Nanoparticles. Journal of Nanomaterials, 2014, 2014, 1-11.	1.5	25
120	Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Composites Part B: Engineering, 2020, 184, 107640.	5.9	25
121	Rice straw fiber reinforced high density polyethylene composite: Effect of coupled compatibilizating and toughening treatment. Journal of Applied Polymer Science, 2011, 119, 2214-2222.	1.3	24
122	Effect of Hybrid Talc-Basalt Fillers in the Shell Layer on Thermal and Mechanical Performance of Co-Extruded Wood Plastic Composites. Materials, 2015, 8, 8510-8523.	1.3	24
123	Influence of Cellulose Nanoparticles on Rheological Behavior of Oil Well Cement-Water Slurries. Materials, 2019, 12, 291.	1.3	24
124	The influence of double-layered distribution of fire retardants on the fire retardancy and mechanical properties of wood fiber polypropylene composites. Construction and Building Materials, 2020, 242, 118047.	3.2	23
125	Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128035.	2.3	22
126	Ag/AgBr/AgVO ₃ Photocatalyst-Embedded Polyacrylonitrile/Polyamide/Chitosan Nanofiltration Membrane for Integrated Filtration and Degradation of RhB. ACS Applied Materials & Interfaces, 2022, 14, 24708-24719.	4.0	22

#	Article	IF	CITATIONS
127	Fabricating electrospun nanofibers with antimicrobial capability: A facile route to recycle biomass tar. Fuel, 2015, 150, 123-130.	3.4	21
128	Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants. RSC Advances, 2016, 6, 13890-13897.	1.7	21
129	THERMAL EXPANSION BEHAVIOR OF CO-EXTRUDED WOOD-PLASTIC COMPOSITES WITH GLASS-FIBER REINFORCED SHELLS. BioResources, 2012, 7, .	0.5	20
130	Asymmetric Flow Field-Flow Fractionation with Multiangle Light Scattering Detection for Characterization of Cellulose Nanocrystals. Biomacromolecules, 2012, 13, 2671-2679.	2.6	19
131	Effect of Fiber Type and Coupling Treatment on Properties of High-Density Polyethylene/Natural Fiber Composites. BioResources, 2013, 8, .	0.5	19
132	Lignin-containing cellulose nanofibers with gradient lignin content obtained from cotton gin motes and cotton gin trash. Cellulose, 2021, 28, 757-773.	2.4	17
133	Thermally Tunable Pickering Emulsions Stabilized by Carbon-Dot-Incorporated Core–Shell Nanospheres with Fluorescence "On–Off―Behavior. Langmuir, 2018, 34, 273-283.	1.6	16
134	Enhanced Antibacterial Performance and Cytocompatibility of Silver Nanoparticles Stabilized by Cellulose Nanocrystal Grafted with Chito-Oligosaccharides. Materials, 2018, 11, 1339.	1.3	16
135	Surface modified cellulose nanocrystals for tailoring interfacial miscibility and microphase separation of polymer nanocomposites. Cellulose, 2019, 26, 4301-4312.	2.4	16
136	Cellulose Nanocrystal–Polyelectrolyte Hybrids for Bentonite Water-Based Drilling Fluids. ACS Applied Bio Materials, 2020, 3, 3015-3027.	2.3	15
137	Lignin-containing cellulose nanofibers made with microwave-aid green solvent treatment for magnetic fluid stabilization. Carbohydrate Polymers, 2022, 291, 119573.	5.1	15
138	Modeling diameter distributions of poly(<i>N</i> â€isopropylacrylamideâ€ <i>co</i> â€methacrylic acid) nanoparticles. Journal of Applied Polymer Science, 2009, 111, 2584-2589.	1.3	14
139	Mechanically adaptive nanocomposites with cellulose nanocrystals: Strain-field mapping with digital image correlation. Carbohydrate Polymers, 2019, 211, 11-21.	5.1	13
140	Synergistic influence of halogenated flame retardants and nanoclay on flame performance of high density polyethylene and wood flour composites. RSC Advances, 2017, 7, 24895-24902.	1.7	12
141	Experimental and numerical analysis of the sound insulation property of wood plastic composites (WPCs) filled with precipitated CaCO3. Holzforschung, 2013, 67, 301-306.	0.9	11
142	Thermal degradation and flammability behavior of fire-retarded wood flour/polypropylene composites. Journal of Fire Sciences, 2016, 34, 226-239.	0.9	11
143	Recent advances in extraction and processing of chitin using deep eutectic solvents. Chemical Engineering Journal, 2022, 446, 136953.	6.6	11
144	Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties. Journal of Materials Science, 2017, 52, 6432-6441.	1.7	10

#	Article	IF	CITATIONS
145	Thermal Stability and Flame Resistance of the Coextruded Wood-Plastic Composites Containing Talc-Filled Plastic Shells. International Journal of Polymer Science, 2020, 2020, 1-9.	1.2	10
146	Mechanical and Thermal Properties of R-High Density Polyethylene Composites Reinforced with Wheat Straw Particleboard Dust and Basalt Fiber. International Journal of Polymer Science, 2018, 2018, 1-10.	1.2	9
147	Bio-Composites Consisting of Cellulose Nanofibers and Na+ Montmorillonite Clay: Morphology and Performance Property. Polymers, 2020, 12, 1448.	2.0	9
148	Effect of Nano-CaCO ₃ and Talc on Property and Weathering Performance of PP Composites. International Journal of Polymer Science, 2017, 2017, 1-9.	1.2	8
149	Fractal dimension analysis of void size in wood-strand composites based on X-ray computer tomography images. Holzforschung, 2013, 67, 177-182.	0.9	7
150	Structural Transformation of Li-Excess Cathode Materials via Facile Preparation and Assembly of Sonication-Induced Colloidal Nanocrystals for Enhanced Lithium Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 31181-31191.	4.0	7
151	Comparative mechanical, fireâ€retarding, and morphological properties of highâ€density polyethylene/(wood flour) composites with different flame retardants. Journal of Vinyl and Additive Technology, 2018, 24, 3-12.	1.8	7
152	Electrospun Poly(Ethylene Oxide) Fibers Reinforced with Poly (Vinylpyrrolidone) Polymer and Cellulose Nanocrystals. , 0, , .		5
153	Sound Transmission Properties of Mineral-filled High-Density Polyethylene (HDPE) and Wood-HDPE Composites. BioResources, 2014, 10, .	0.5	4
154	Rapid Preparation of Cellulose Nanofibers from Energy Cane Bagasse and Their Application as Stabilizer and Rheological Modifiers in Magnetorheological Fluid. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
155	<scp>3Dâ€printed woodâ€polylactic acidâ€thermoplastic</scp> starch composites: Performance features in relation to biodegradation treatment. Journal of Applied Polymer Science, 2021, 138, 50914.	1.3	4
156	Technique to Protect <i>Bacillus pseudofirmus</i> Bacteria Using Chitin Nanofibers for Future Use in Self-Healing Concrete. , 2021, , .		4
157	Rheological Properties of Lignocellulosic Nanomaterial Aqueous Suspensions as Influenced by Water-Soluble Biopolymer Additives. ACS Sustainable Chemistry and Engineering, 2021, 9, 17049-17060.	3.2	4
158	Carbonized Cellulose Nanofibril with Individualized Fibrous Morphology: toward Multifunctional Applications in Polycaprolactone Conductive Composites. ACS Applied Bio Materials, 2021, 4, 5169-5179.	2.3	3
159	Salt sensitivity of low solid content bentonite suspension as influenced by lignocellulosic nanomaterial and polyanionic cellulose. MRS Communications, 2021, 11, 726-738.	0.8	3
160	High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties. International Journal of Polymer Science, 2015, 2015, 1-7.	1.2	2
161	Biofilter treatment of gas phase β-caryophyllene at an elevated temperature. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 752-765.	0.9	2
162	Rheology and Filtration Properties of Bentonite–Water Suspensions as Influenced by Lignocellulosic Nanomaterials and Water-Soluble Biopolymer Additives. Energy & Fuels, 0, , .	2.5	2