
Carlo Caligiuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Investigation and RSM Modeling of the Effects of Injection Timing on the Performance and NOx Emissions of a Micro-Cogeneration Unit Fueled with Biodiesel Blends. Energies, 2022, 15, 3586.	3.1	6
2	Unit commitment optimization of a micro-grid with a MILP algorithm: Role of the emissions, bio-fuels and power generation technology. Energy Reports, 2021, 7, 8639-8651.	5.1	17
3	Complementing Syngas with Natural Gas in Spark Ignition Engines for Power Production: Effects on Emissions and Combustion. Energies, 2021, 14, 3688.	3.1	14
4	The kinematic viscosity of conventional and bio-based fuel blends as a key parameter to indirectly estimate the performance of compression-ignition engines for agricultural purposes. Fuel, 2021, 298, 120817.	6.4	8
5	Diesel fuel substitution using forestry biomass producer gas: Effects of dual fuel combustion on performance and emissions of a micro-CHP system. Journal of the Energy Institute, 2021, 98, 334-345.	5.3	8
6	An electro-thermal model and its electrical parameters estimation procedure in a lithium-ion battery cell. Energy, 2021, 234, 121296.	8.8	27
7	The Response Surface Methodology as a Tool to Evaluate the Effects of Using Diesel-Biodiesel-Bioethanol Blends as Farm Tractor Fuel. Lecture Notes in Civil Engineering, 2020, , 539-549.	0.4	0
8	Proposal of a Predictive Mixed Experimental- Numerical Approach for Assessing the Performance of Farm Tractor Engines Fuelled with Diesel- Biodiesel-Bioethanol Blends. Energies, 2019, 12, 2287.	3.1	16
9	The effect of using diesel-biodiesel-bioethanol blends on the fuel feed pump of a small-scale internal combustion engine. Energy Procedia, 2019, 158, 953-958.	1.8	10
10	Use of diesel-biodiesel-bioethanol blends in farm tractors: first results obtained with a mixed experimental-numerical approach. Energy Procedia, 2019, 158, 965-971.	1.8	12
11	Experimental investigation on the effects of bioethanol addition in diesel-biodiesel blends on emissions and performances of a micro-cogeneration system. Energy Conversion and Management, 2019, 185, 55-65.	9.2	35
12	Micro Gas Turbine Cycle Humidification for Increased Flexibility: Numerical and Experimental Validation of Different Steam Injection Models. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	7
13	Modeling the emissions of a dual fuel engine coupled with a biomass gasifier—supplementing the Wiebe function. Environmental Science and Pollution Research, 2018, 25, 35866-35873.	5.3	8
14	Micro-Gas Turbine Feed With Natural Gas and Synthesis Gas: Variation of the Turbomachinesâ \in ^{IM} Operative Conditions With and Without Steam Injection., 2017,,.		3
15	Combustion modelling of a dual fuel diesel – producer gas compression ignition engine. Energy Procedia, 2017, 142, 1395-1400.	1.8	20