Reza Zadmard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227272/publications.pdf

Version: 2024-02-01

623734 477307 32 869 14 29 citations g-index h-index papers 33 33 33 962 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanomolar Protein Sensing with Embedded Receptor Molecules. Journal of the American Chemical Society, 2005, 127, 904-915.	13.7	135
2	Color Fingerprinting of Proteins by Calixarenes Embedded in Lipid/Polydiacetylene Vesicles. Journal of the American Chemical Society, 2006, 128, 13592-13598.	13.7	130
3	Capsule-like Assemblies in Polar Solvents. Journal of Organic Chemistry, 2003, 68, 6511-6521.	3.2	73
4	DNA Recognition with Large Calixarene Dimers. Angewandte Chemie - International Edition, 2006, 45, 2703-2706.	13.8	72
5	Binding of \hat{l}^2 -carotene to whey proteins: Multi-spectroscopic techniques and docking studies. Food Chemistry, 2019, 277, 96-106.	8.2	72
6	Spectroscopic and docking studies on the interaction between caseins and \hat{l}^2 -carotene. Food Chemistry, 2018, 255, 187-196.	8.2	49
7	Multivalent calix[4]arene-based fluorescent sensor for detecting silver ions in aqueous media and physiological environment. Biosensors and Bioelectronics, 2017, 90, 290-297.	10.1	47
8	Protein surface recognition by calixarenes. RSC Advances, 2014, 4, 41529-41542.	3.6	37
9	Recent progress to construct calixarene-based polymers using covalent bonds: synthesis and applications. RSC Advances, 2020, 10, 32690-32722.	3.6	24
10	Immobilization of Chlorosulfonyl-Calix[4] arene onto the surface of silica gel through the directly estrification. Applied Surface Science, 2012, 258, 5925-5932.	6.1	21
11	Calixarene Dimers as Host Molecules for Biologically Important Di―and Oligophosphates. Chemistry - an Asian Journal, 2009, 4, 1458-1464.	3.3	18
12	Efficient synthesis of lower rim \hat{l}_{\pm} -hydrazino tetrazolocalix[4]arenes via an Ugi-azide multicomponent reaction. New Journal of Chemistry, 2015, 39, 6578-6584.	2.8	16
13	Preparation and evaluation of a chiral HPLC stationary phase based on cone calix[4]arene functionalized at the upper rim with ⟨scp⟩l⟨/scp⟩â€alanine units. Biomedical Chromatography, 2018, 32, e4122.	1.7	16
14	A highly selective fluorescent chemosensor for NADH based on calix[4]arene dimer. Tetrahedron, 2017, 73, 604-607.	1.9	15
15	Green synthesis of imidazo[1,2-a]pyridines using calix[6]arene-SO3H surfactant in water. Tetrahedron Letters, 2018, 59, 2393-2398.	1.4	12
16	Synthesis of novel 6-piperidin-1-ylpyrimidine-2,4-diamine 3-oxide substituted calix[4]arene as a highly selective and sensitive fluorescent sensor for Cu2+ in aqueous samples. Tetrahedron Letters, 2020, 61, 151658.	1.4	12
17	A convenient and efficient one-pot method for the synthesis of novel acridine-calix[4] arene derivatives as new DNA binding agents via multicomponent reaction. Supramolecular Chemistry, 2014, 26, 442-449.	1.2	11
18	DNA Binding and Recognition of a CC Mismatch in a DNA Duplex by Water-Soluble Peptidocalix[4]arenes: Synthesis and Applications. Organic Letters, 2016, 18, 4766-4769.	4.6	10

#	Article	IF	CITATIONS
19	Calix[4]arene-based crab-like molecular sensors for highly selective detection of mercury and copper ions. Supramolecular Chemistry, 2017, 29, 17-23.	1.2	10
20	Silica bonded calix[4]arene as an efficient, selective and reusable sorbent for rubber chemical additives. Journal of Porous Materials, 2018, 25, 1463-1474.	2.6	9
21	Synthesis of a New Calix[4]Arene and Its Application in Construction of a Highly Selective Silver Ion-Selective Membrane Electrode. Research Letters in Organic Chemistry, 2009, 2009, 1-5.	0.6	7
22	Separation of Amino Acids by High Performance Liquid Chromatography Based on Calixarene-Bonded Stationary Phases. Journal of Chromatographic Science, 2015, 53, 702-707.	1.4	7
23	Highly functionalized calix[4]arenes <i>via</i> multicomponent reactions: synthesis and recognition properties. RSC Advances, 2019, 9, 19596-19605.	3.6	7
24	Synthesis and protein binding properties of novel highly functionalized Calix[4]arene. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 86, 27-32.	1.6	6
25	An Efficient Multiâ€Component Synthesis of Highly Functionalized Calix[4]arenes with Pronounced Binding Affinity toward βâ€Lactoglobulin. European Journal of Organic Chemistry, 2016, 2016, 3894-3899.	2.4	6
26	Synthesis of a new chitosan- <i>p-tert</i> -butylcalix[4]arene polymer as adsorbent for toxic mercury ion. Royal Society Open Science, 2022, 9, .	2.4	6
27	Calix[4]areneâ€based Multifunctional Ligand as Potent Protein Binding Agent. Journal of Heterocyclic Chemistry, 2018, 55, 2532-2537.	2.6	5
28	Covalently Linked at the Lower Rim Doubleâ€Calix[4]arene as a Precursor for Multicavity Supramolecular Receptor. Synthetic Communications, 2008, 38, 1830-1836.	2.1	4
29	Functionalized calix[4]arene-based receptor for saccharide recognition. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 83, 53-61.	1.6	4
30	Efficiency of milk proteins in eliminating practical limitations of \hat{l}^2 -carotene in hydrated polar solution. Food Chemistry, 2020, 330, 127218.	8.2	4
31	Synthesis of novel lower rim dimethylcarbamodithioate substituted calix[4]arene as selective and sensitive turn-on fluorescent sensor for detection of phosphate in aqueous solution. Tetrahedron Letters, 2021, 71, 153046.	1.4	1
32	Conformational Mobility Study in Mono Quinone Derivative of Calix[4]arene by Low Temperature NMR Spectroscopy. Letters in Organic Chemistry, 2020, 17, 101-106.	0.5	0