
Richard J Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Parasexual Cycle in Candida albicans Provides an Alternative Pathway to Meiosis for the Formation of Recombinant Strains. PLoS Biology, 2008, 6, e110.	5.6	323
2	Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO Journal, 2003, 22, 2505-2515.	7.8	307
3	Genetic and phenotypic intra-species variation in <i>Candida albicans</i> . Genome Research, 2015, 25, 413-425.	5.5	305
4	The â€~obligate diploid' Candida albicans forms mating-competent haploids. Nature, 2013, 494, 55-59.	27.8	246
5	Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature, 2009, 460, 890-893.	27.8	196
6	Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nature Communications, 2018, 9, 2470.	12.8	175
7	Identification and Characterization of a Candida albicans Mating Pheromone. Molecular and Cellular Biology, 2003, 23, 8189-8201.	2.3	154
8	Fungal mating pheromones: Choreographing the dating game. Fungal Genetics and Biology, 2011, 48, 668-676.	2.1	132
9	Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen <i>Candida tropicalis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21158-21163.	7.1	110
10	Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8688-E8697.	7.1	109
11	Stress-Induced Phenotypic Switching in <i>Candida albicans</i> . Molecular Biology of the Cell, 2009, 20, 3178-3191.	2.1	107
12	Rapid Mechanisms for Generating Genome Diversity: Whole Ploidy Shifts, Aneuploidy, and Loss of Heterozygosity. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019604-a019604.	6.2	106
13	The cryptic sexual strategies of human fungal pathogens. Nature Reviews Microbiology, 2014, 12, 239-251.	28.6	97
14	Structure and Function of RecQ DNA Helicases. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39, 79-97.	5.2	89
15	Genetic Control of Conventional and Pheromone-Stimulated Biofilm Formation in Candida albicans. PLoS Pathogens, 2013, 9, e1003305.	4.7	83
16	The role of nutrient regulation and the Gpa2 protein in the mating pheromone response ofC. albicans. Molecular Microbiology, 2006, 62, 100-119.	2.5	70
17	Destructin-1 is a collagen-degrading endopeptidase secreted by <i>Pseudogymnoascus destructans</i> , the causative agent of white-nose syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7478-7483.	7.1	68
18	The parasexual lifestyle of Candida albicans. Current Opinion in Microbiology, 2015, 28, 10-17.	5.1	67

RICHARD J BENNETT

#	Article	IF	CITATIONS
19	The Genome of the Human Pathogen <i>Candida albicans</i> Is Shaped by Mutation and Cryptic Sexual Recombination. MBio, 2018, 9, .	4.1	63
20	Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and Commensalism. Cell Host and Microbe, 2019, 25, 418-431.e6.	11.0	63
21	Interspecies pheromone signaling promotes biofilm formation and same-sex mating in <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2510-2515.	7.1	56
22	Fungal Sex: The <i>Ascomycota</i> . Microbiology Spectrum, 2016, 4, .	3.0	50
23	Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Molecular Microbiology, 2005, 55, 1046-1059.	2.5	49
24	MTL–Independent Phenotypic Switching in Candida tropicalis and a Dual Role for Wor1 in Regulating Switching and Filamentation. PLoS Genetics, 2013, 9, e1003369.	3.5	44
25	Parasexuality and Ploidy Change in Candida tropicalis. Eukaryotic Cell, 2013, 12, 1629-1640.	3.4	43
26	Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells. MBio, 2016, 7, .	4.1	43
27	Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature, 2014, 506, 387-390.	27.8	41
28	Parasex Generates Phenotypic Diversity <i>de Novo</i> and Impacts Drug Resistance and Virulence in <i>Candida albicans</i> . Genetics, 2017, 207, 1195-1211.	2.9	41
29	Metabolismâ€induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO Journal, 2019, 38, e101597.	7.8	41
30	Finding a Missing Gene: <i>EFG1</i> Regulates Morphogenesis in <i>Candida tropicalis</i> . G3: Genes, Genomes, Genetics, 2015, 5, 849-856.	1.8	40
31	A chromosome 4 trisomy contributes to increased fluconazole resistance in a clinical isolate of Candida albicans. Microbiology (United Kingdom), 2017, 163, 856-865.	1.8	39
32	Barrier Activity in Candida albicans Mediates Pheromone Degradation and Promotes Mating. Eukaryotic Cell, 2007, 6, 907-918.	3.4	37
33	Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host. Frontiers in Microbiology, 2016, 7, 780.	3.5	36
34	Epigenetic cell fate in Candida albicans is controlled by transcription factor condensates acting at super-enhancer-like elements. Nature Microbiology, 2020, 5, 1374-1389.	13.3	34
35	Systematic Genetic Screen for Transcriptional Regulators of the <i>Candida albicans</i> White-Opaque Switch. Genetics, 2016, 203, 1679-1692.	2.9	33
36	Sexual reproduction in the Candida clade: cryptic cycles, diverse mechanisms, and alternative functions. Cellular and Molecular Life Sciences, 2010, 67, 3275-3285.	5.4	30

RICHARD J BENNETT

#	Article	IF	CITATIONS
37	A â€~parameiosis' drives depolyploidization and homologous recombination in Candida albicans. Nature Communications, 2019, 10, 4388.	12.8	30
38	Mechanisms of genome evolution in Candida albicans. Current Opinion in Microbiology, 2019, 52, 47-54.	5.1	26
39	A Multistate Toggle Switch Defines Fungal Cell Fates and Is Regulated by Synergistic Genetic Cues. PLoS Genetics, 2016, 12, e1006353.	3.5	25
40	Microtubule Motor Protein Kar3 Is Required for Normal Mitotic Division and Morphogenesis in Candida albicans. Eukaryotic Cell, 2008, 7, 1460-1474.	3.4	24
41	Development of a CRISPR-Cas9 System for Efficient Genome Editing of Candida lusitaniae. MSphere, 2017, 2, .	2.9	24
42	The Impact of Gene Dosage and Heterozygosity on the Diploid Pathobiont Candida albicans. Journal of Fungi (Basel, Switzerland), 2020, 6, 10.	3.5	23
43	Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract. MBio, 2021, 12, e0287821.	4.1	21
44	Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Reports, 2022, 39, 110837.	6.4	17
45	Epigenetic control of pheromone MAPK signaling determines sexual fecundity in <i>Candida albicans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13780-13785.	7.1	16
46	A Candida-based view of fungal sex and pathogenesis. Genome Biology, 2009, 10, 230.	9.6	15
47	Genetic Modification of Closely Related Candida Species. Frontiers in Microbiology, 2019, 10, 357.	3.5	15
48	Deletion of a Yci1 Domain Protein of Candida albicans Allows Homothallic Mating in <i>MTL</i> Heterozygous Cells. MBio, 2016, 7, e00465-16.	4.1	14
49	A coupled process of same- and opposite-sex mating generates polyploidy and genetic diversity in Candida tropicalis. PLoS Genetics, 2018, 14, e1007377.	3.5	14
50	Intraspecies Transcriptional Profiling Reveals Key Regulators of Candida albicans Pathogenic Traits. MBio, 2021, 12, .	4.1	14
51	Coming of Age—Sexual Reproduction in Candida Species. PLoS Pathogens, 2010, 6, e1001155.	4.7	11
52	Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndrome in bats. PLoS ONE, 2018, 13, e0201915.	2.5	11
53	Monitoring Phenotypic Switching inCandida albicansand the Use of Nextâ€Gen Fluorescence Reporters. Current Protocols in Microbiology, 2019, 53, e76.	6.5	11
54	Negative regulation of filamentous growth in <i>CandidaÂalbicans</i> by Dig1p. Molecular Microbiology, 2017, 105, 810-824.	2.5	10

RICHARD J BENNETT

#	Article	IF	CITATIONS
55	Comparative genomics of white and opaque cell states supports an epigenetic mechanism of phenotypic switching in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	10
56	To Switch or Not to Switch? Phenotypic switching is sensitive to multiple inputs in a pathogenic fungus. Communicative and Integrative Biology, 2009, 2, 509-511.	1.4	8
57	Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity. MBio, 2015, 6, e01604-15.	4.1	8
58	Analogous Telesensing Pathways Regulate Mating and Virulence in Two Opportunistic Human Pathogens. MBio, 2010, 1, .	4.1	7
59	Characterization of PdCP1, a serine carboxypeptidase from <i>Pseudogymnoascus destructans</i> , the causal agent of White-nose Syndrome. Biological Chemistry, 2018, 399, 1375-1388.	2.5	6
60	Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation. Eukaryotic Cell, 2015, 14, 755-774.	3.4	5
61	Fungal Sex: The <i>Ascomycota</i> ., 0, , 115-145.		4
62	Adaptation to the dietary sugar D-tagatose via genome instability in polyploid Candida albicans cells. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
63	A Genomeâ€wide Screen for Transcription Factors that Confer Resistance to Sulforaphane in the Yeast, Candida albicans. FASEB Journal, 2011, 25, 969.1.	0.5	0
64	Genome Reduction in Yeast Involves Programmed Cell Death. FASEB Journal, 2011, 25, 943.12.	0.5	0
65	A Genomeâ€wide Screen for Transcription Factors Involved in Programmed Cell Death in the Yeast, Candida albicans. FASEB Journal, 2011, 25, 943.2.	0.5	0
66	Genome reduction in yeast involves programmed cell death. FASEB Journal, 2012, 26, 798.14.	0.5	0
67	Genome Reduction In Yeast Involves Programmed Cell Death. FASEB Journal, 2013, 27, 834.10.	0.5	0
68	<i>In vitro</i> model of pulmonary candidiasis for testing novel therapeutics. FASEB Journal, 2022, 36,	0.5	0