Xianying Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227260/publications.pdf Version: 2024-02-01

XIANVING OIN

#	Article	IF	CITATIONS
1	Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Advanced Functional Materials, 2021, 31, 2011102.	7.8	172
2	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	5.4	14
3	Promoting the reversibility of lithium ion/lithium metal hybrid graphite anode by regulating solid electrolyte interface. Nano Energy, 2021, 90, 106510.	8.2	20
4	Synthesis design of a 3D interfacial structure for highly reversible lithium deposition. Journal of Materials Chemistry A, 2021, 9, 25004-25012.	5.2	6
5	Gradient Structure Design of a Floatable Host for Preferential Lithium Deposition. Nano Letters, 2021, 21, 10252-10259.	4.5	10
6	A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3â^' in carbonate electrolyte. Energy Storage Materials, 2020, 24, 229-236.	9.5	31
7	Horizontal Stress Release for Protuberanceâ€Free Li Metal Anode. Advanced Functional Materials, 2020, 30, 2002522.	7.8	22
8	Simultaneously Homogenized Electric Field and Ionic Flux for Reversible Ultrahigh-Areal-Capacity Li Deposition. Nano Letters, 2020, 20, 5662-5669.	4.5	29
9	Electrosprayed Robust Graphene Layer Constructing Ultrastable Electrode Interface for High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 37034-37046.	4.0	13
10	Facile Synthesis of Antâ€Nestâ€Like Porous Duplex Copper as Deeply Cycling Host for Lithium Metal Anodes. Small, 2020, 16, e2001784.	5.2	33
11	Basal Nanosuit of Graphite for High-Energy Hybrid Li Batteries. ACS Nano, 2020, 14, 1837-1845.	7.3	40
12	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	11.1	108
13	Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Materials, 2019, 18, 320-327.	9.5	102
14	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	7.8	112
15	In-Plane Highly Dispersed Cu ₂ O Nanoparticles for Seeded Lithium Deposition. Nano Letters, 2019, 19, 4601-4607.	4.5	75
16	Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Advanced Materials, 2019, 31, e1806620.	11.1	390
17	A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 13225-13233.	5.2	49
18	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon, 2019, 141, 16-24.	5.4	54

XIANYING QIN

#	Article	IF	CITATIONS
19	An interwoven MoO ₃ @CNT scaffold interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 8612-8619.	5.2	141
20	Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries. Nano Research, 2018, 11, 892-904.	5.8	110
21	Electrospun Nâ€Doped Hierarchical Porous Carbon Nanofiber with Improved Degree of Graphitization for Highâ€Performance Lithium Ion Capacitor. Chemistry - A European Journal, 2018, 24, 10460-10467.	1.7	55
22	Fe ₃ O ₄ -Decorated Porous Graphene Interlayer for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26264-26273.	4.0	117
23	Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy. Energy and Environmental Materials, 2018, 1, 28-40.	7.3	80
24	Suppressing Selfâ€Discharge and Shuttle Effect of Lithium–Sulfur Batteries with V ₂ O ₅ â€Decorated Carbon Nanofiber Interlayer. Small, 2017, 13, 1602539.	5.2	190
25	Recent innovative configurations in high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 5222-5234.	5.2	115
26	Large Polarization of Li ₄ Ti ₅ O ₁₂ Lithiated to 0 V at Large Charge/Discharge Rates. ACS Applied Materials & Interfaces, 2016, 8, 18788-18796.	4.0	51
27	Ultrafine TiO ₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 23105-23113.	4.0	200
28	Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 12973-12980.	5.2	64
29	Electrospun core–shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7112-7120.	5.2	99
30	Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode–electrolyte interfacial fabrication in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 20059-20066.	5.2	92