Nathalie Labrecque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1227137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circadian rhythms in adaptive immunity and vaccination. Seminars in Immunopathology, 2022, 44, 193-207.	2.8	31
2	The Idd2 Locus Confers Prominent Resistance to Autoimmune Diabetes. Journal of Immunology, 2022, 208, 898-909.	0.4	0
3	Role of NR4A family members in myeloid cells and leukemia. Current Research in Immunology, 2022, 3, 23-36.	1.2	6
4	NR4A3 Mediates Thymic Negative Selection. Journal of Immunology, 2021, 207, 1055-1064.	0.4	4
5	The Assessment of Circadian Rhythms Within the Immune System. Methods in Molecular Biology, 2021, 2130, 29-51.	0.4	3
6	Early programming of CD8 ⁺ T cell response by the orphan nuclear receptor NR4A3. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24392-24402.	3.3	20
7	GCNT1-Mediated <i>O</i> -Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. Journal of Immunology, 2020, 204, 1674-1688.	0.4	17
8	Critical Role of Lipid Scramblase TMEM16F in Phosphatidylserine Exposure and Repair of Plasma Membrane after Pore Formation. Cell Reports, 2020, 30, 1129-1140.e5.	2.9	55
9	Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. Frontiers in Endocrinology, 2020, 11, 624122.	1.5	53
10	The orphan nuclear receptor NR4A3 controls the differentiation of monocyte-derived dendritic cells following microbial stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15150-15159.	3.3	44
11	The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20077-20086.	3.3	100
12	Early Notch Signals Induce a Pathogenic Molecular Signature during Priming of Alloantigen-Specific Conventional CD4+ T Cells in Graft-versus-Host Disease. Journal of Immunology, 2019, 203, 557-568.	0.4	10
13	The Notch signaling pathway controls CD8+ T cell differentiation independently of the classical effector HES1. PLoS ONE, 2019, 14, e0215012.	1.1	4
14	Neuropilin-1 expression in adipose tissue macrophages protects against obesity and metabolic syndrome. Science Immunology, 2018, 3, .	5.6	41
15	Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nature Communications, 2018, 9, 5368.	5.8	26
16	Inflammation enhances the vaccination potential of CD40â€activated B cells in mice. European Journal of Immunology, 2017, 47, 269-279.	1.6	4
17	The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Scientific Reports, 2017, 7, 10892.	1.6	76

18 In Situ Analysis of T Cell Receptor Signals during Positive Selection., 2017, , 17-39.

2

NATHALIE LABRECQUE

#	Article	IF	CITATIONS
19	Neuropilin-1–Expressing Microglia Are Associated With Nascent Retinal Vasculature Yet Dispensable for Developmental Angiogenesis. , 2016, 57, 1530.		31
20	Dok-1 and Dok-2 Regulate the Formation of Memory CD8+ T Cells. Journal of Immunology, 2016, 197, 3618-3627.	0.4	7
21	VEGF Requires the Receptor NRP-1 To Inhibit Lipopolysaccharide-Dependent Dendritic Cell Maturation. Journal of Immunology, 2016, 197, 3927-3935.	0.4	43
22	The atypical <scp>MAPK ERK</scp> 3 controls positive selection of thymocytes. Immunology, 2015, 145, 161-169.	2.0	11
23	The Notch Signaling Pathway Controls Short-Lived Effector CD8+ T Cell Differentiation but Is Dispensable for Memory Generation. Journal of Immunology, 2015, 194, 5654-5662.	0.4	37
24	Circadian Clocks in the Immune System. Journal of Biological Rhythms, 2015, 30, 277-290.	1.4	348
25	Notch controls effector CD8+ T cell differentiation. Oncotarget, 2015, 6, 21787-21788.	0.8	6
26	The Catalytic Activity of the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 3 Is Required To Sustain CD4 ⁺ CD8 ⁺ Thymocyte Survival. Molecular and Cellular Biology, 2014, 34, 3374-3387.	1.1	17
27	IL-2 Induction of Blimp-1 Is a Key In Vivo Signal for CD8+ Short-Lived Effector T Cell Differentiation. Journal of Immunology, 2014, 193, 1847-1854.	0.4	24
28	The Non-Classical MAP Kinase ERK3 Controls T Cell Activation. PLoS ONE, 2014, 9, e86681.	1.1	17
29	Notch signaling regulates PDâ€1 expression during CD8 ⁺ Tâ€cell activation. Immunology and Cell Biology, 2013, 91, 82-88.	1.0	105
30	IL-6 Production by Dendritic Cells Is Dispensable for CD8 ⁺ Memory T-Cell Generation. BioMed Research International, 2013, 2013, 1-12.	0.9	11
31	Murine Superficial Lymph Node Surgery. Journal of Visualized Experiments, 2012, , e3444.	0.2	7
32	CD40-Activated B Cells Can Efficiently Prime Antigen-Specific NaÃ⁻ve CD8+ T Cells to Generate Effector but Not Memory T cells. PLoS ONE, 2012, 7, e30139.	1.1	41
33	Circadian Variation of the Response of T Cells to Antigen. Journal of Immunology, 2011, 187, 6291-6300.	0.4	151
34	Molecular and genetic parameters defining Tâ€cell clonal selection. Immunology and Cell Biology, 2011, 89, 16-26.	1.0	26
35	Lowering TCR expression on naive CD8 + T cells does not affect memory Tâ€cell differentiation. Immunology and Cell Biology, 2011, 89, 322-325.	1.0	6
36	Epitope Density Influences CD8+ Memory T Cell Differentiation. PLoS ONE, 2010, 5, e13740.	1.1	26

NATHALIE LABRECQUE

#	Article	IF	CITATIONS
37	Memory T-lymphocyte survival does not require T-cell receptor expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20440-20445.	3.3	36
38	IL-21 promotes T lymphocyte survival by activating the phosphatidylinositol-3 kinase signaling cascade. Journal of Leukocyte Biology, 2007, 82, 645-656.	1.5	65
39	Overexpression of ILâ€21 promotes massive CD8 ⁺ memory T cell accumulation. European Journal of Immunology, 2007, 37, 3069-3077.	1.6	72
40	IL-7 Receptor Expression Levels Do Not Identify CD8+ Memory T Lymphocyte Precursors following Peptide Immunization. Journal of Immunology, 2005, 175, 4400-4407.	0.4	90
41	How Much TCR Does a T Cell Need?. Immunity, 2001, 15, 71-82.	6.6	203