PaweÅ, Podemski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic and Optical Properties of InAs QDs Grown by MBE on InGaAs Metamorphic Buffer. Materials, 2022, 15, 1071.	1.3	3
2	InP-Substrate-Based Quantum Dashes on a DBR as Single-Photon Emitters at the Third Telecommunication Window. Materials, 2021, 14, 759.	1.3	5
3	Spin memory effect in charged single telecom quantum dots. Optics Express, 2021, 29, 34024.	1.7	3
4	Metamorphic Buffer Layer Platform for 1550 nm Single-Photon Sources Grown by MBE on (100) GaAs Substrate. Materials, 2021, 14, 5221.	1.3	8
5	Spin memory effect in charged single telecom quantum dots: erratum. Optics Express, 2021, 29, 36460.	1.7	0
6	Interplay between emission wavelength and s-p splitting in MOCVD-grown InGaAs/GaAs quantum dots emitting above 1.3 <i>μ</i> m. Applied Physics Letters, 2020, 116, .	1.5	7
7	Single dot photoluminescence excitation spectroscopy in the telecommunication spectral range. Journal of Luminescence, 2019, 212, 300-305.	1.5	9
8	Excited states of neutral and charged excitons in single strongly asymmetric InP-based nanostructures emitting in the telecom C band. Physical Review B, 2019, 100, .	1.1	9
9	Optimizing the InGaAs/GaAs Quantum Dots for 1.3 μm Emission. Acta Physica Polonica A, 2017, 132, 386-390.	0.2	5
10	Probing the carrier transfer processes in a self-assembled system with In 0.3 Ga 0.7 As/GaAs quantum dots by photoluminescence excitation spectroscopy. Superlattices and Microstructures, 2016, 93, 214-220.	1.4	2
11	Energy Transfer Processes in InAs/GaAs Quantum Dot Bilayer Structure. Acta Physica Polonica A, 2016, 129, A-59-A-61.	0.2	2
12	Probing the Excitonic States of Site-Controlled GaN Nanowire Quantum Dots. Nano Letters, 2015, 15, 1047-1051.	4.5	10
13	Measurement of an Exciton Rabi Rotation in a SingleGaN/AlxGa1â^'xNNanowire-Quantum Dot Using Photoluminescence Spectroscopy: Evidence for Coherent Control. Physical Review Letters, 2013, 111, 057401.	2.9	26
14	Temperature Dependent Photoluminescence Excitation Spectroscopy of GaN Quantum Dots in Site Controlled GaN/AlGaN Nanowires. Japanese Journal of Applied Physics, 2013, 52, 08JL02.	0.8	6
15	Electronic Structure of Elongated In_{0.3}Ga_{0.7}As/GaAs Quantum Dots. Acta Physica Polonica A, 2013, 124, 809-812.	0.2	0
16	GaAs-Based Quantum Well Exciton-Polaritons beyond 1 μm. Acta Physica Polonica A, 2013, 124, 817-820.	0.2	2
17	Photoluminescence Excitation Spectroscopy on Single GaN Quantum Dots. Applied Physics Express, 2013, 6, 012102.	1.1	11
18	Carrier trapping and luminescence polarization in quantum dashes. Physical Review B, 2012, 85, .	1.1	38

PaweÅ, Podemski

#	Article	IF	CITATIONS
19	On the mechanisms of energy transfer between quantum well and quantum dashes. Journal of Applied Physics, 2012, 112, 033520.	1.1	6
20	Multiexcitonic emission from single elongated InGaAs/GaAs quantum dots. Journal of Applied Physics, 2012, 111, 063522.	1.1	2
21	Height-driven linear polarization of the surface emission from quantum dashes. Semiconductor Science and Technology, 2012, 27, 105022.	1.0	17
22	Impact of the localized wetting layer states on carrier relaxation processes in GaAs-based quantum dash structures. AIP Conference Proceedings, 2011, , .	0.3	2
23	Hole Subband Mixing and Polarization of Luminescence from Quantum Dashes: A Simple Model. Acta Physica Polonica A, 2011, 119, 633-636.	0.2	11
24	Temperature Dependence of Photoluminescence from Epitaxial InGaAs/GaAs Quantum Dots with High Lateral Aspect Ratio. Acta Physica Polonica A, 2011, 120, 883-887.	0.2	6
25	Excitonic complexes in InGaAs/GaAs quantum dash structures. Journal of Physics: Conference Series, 2010, 245, 012054.	0.3	3
26	On the applicability of a few level rate equation model to the determination of exciton versus biexciton kinetics in quasi-zero-dimensional structures. Journal of Applied Physics, 2010, 108, .	1.1	14
27	Exciton kinetics and few particle effects in self-assembled GaAs-based quantum dashes. Journal of Applied Physics, 2010, 107, 096106.	1.1	10
28	Orientation dependent emission properties of columnar quantum dash laser structures. Applied Physics Letters, 2009, 94, 241113.	1.5	13
29	Optically pumped lasing from a single pillar microcavity with InGaAs/GaAs quantum well potential fluctuation quantum dots. Journal of Applied Physics, 2009, 105, 053513.	1.1	4
30	Exciton and biexciton emission from a single InAs/InP quantum dash. Journal of Applied Physics, 2009, 105, 086104.	1.1	26
31	Electromodulation spectroscopy of In0.53Ga0.47As/In0.53Ga0.23Al0.24As quantum wells. Superlattices and Microstructures, 2009, 46, 425-434.	1.4	3
32	Columnar Quantum Dashes for polarization insensitive semiconductor optical amplifiers. , 2009, , .		1
33	Columnar quantum dashes for an active region in polarization independent semiconductor optical amplifiers at 1.55î¼m. Applied Physics Letters, 2008, 93, .	1.5	23
34	Photoluminescence from a single InGaAs epitaxial quantum rod. Applied Physics Letters, 2008, 92, 021901.	1.5	22
35	Efficient energy transfer in InAs quantum dash based tunnel-injection structures at low temperatures. , 2007, , .		4
36	Experimental evidence on quantum well–quantum dash energy transfer in tunnel injection structures for 1.551¼m emission. Applied Physics Letters, 2007, 90, 081915.	1.5	26

PaweÅ, Podemski

#	Article	IF	CITATIONS
37	Contactless modulated reflectivity of quasi 0D self-assembled semiconductor structures. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 400-411.	0.8	1
38	Thermal quenching of photoluminescence from InAsâ^•In0.53Ga0.23Al0.24Asâ^•InP quantum dashes with different sizes. Applied Physics Letters, 2006, 89, 151902.	1.5	23
39	Photoreflectance-probed excited states in InAsâ•InGaAlAs quantum dashes grown on InP substrate. Applied Physics Letters, 2006, 89, 031908.	1.5	40
40	On the tunnel injection of excitons and free carriers from In0.53Ga0.47Asâ^In0.53Ga0.23Al0.24As quantum well to InAsâ^In0.53Ga0.23Al0.24As quantum dashes. Applied Physics Letters, 2006, 89, 061902.	1.5	17
41	Immersion Layer in Columnar Quantum Dash Structure as a Polarization Insensitive Light Emitter at 1.55 µm. Applied Physics Express, 0, 2, 061102.	1.1	6