Sung Gap Im

List of Publications by Citations

Source: https://exaly.com/author-pdf/1226722/sung-gap-im-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 4,927 41 174 h-index g-index citations papers 5,658 8.9 185 5.76 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
174	Direct monolithic integration of organic photovoltaic circuits on unmodified paper. <i>Advanced Materials</i> , 2011 , 23, 3499-3505	24	221
173	Oxidative Chemical Vapor Deposition of Electrically Conducting Poly(3,4-ethylenedioxythiophene) Films. <i>Macromolecules</i> , 2006 , 39, 5326-5329	5.5	190
172	Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. <i>Nature Materials</i> , 2015 , 14, 628-35	27	184
171	Systematic Control of the Electrical Conductivity of Poly(3,4-ethylenedioxythiophene) via Oxidative Chemical Vapor Deposition. <i>Macromolecules</i> , 2007 , 40, 6552-6556	5.5	176
170	Initiated and oxidative chemical vapor deposition: a scalable method for conformal and functional polymer films on real substrates. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5227-40	3.6	117
169	Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. <i>ACS Nano</i> , 2014 , 8, 7809-22	16.7	113
168	A Low-Temperature Thin-Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite Solar Cell. <i>Advanced Energy Materials</i> , 2018 , 8, 1701928	21.8	98
167	BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. <i>Biomaterials</i> , 2013 , 34, 7236-46	15.6	97
166	One-Step Synthesis of Cross-Linked Ionic Polymer Thin Films in Vapor Phase and Its Application to an Oil/Water Separation Membrane. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2329-2337	16.4	91
165	Conformal coverage of poly(3,4-ethylenedioxythiophene) films with tunable nanoporosity via oxidative chemical vapor deposition. <i>ACS Nano</i> , 2008 , 2, 1959-67	16.7	87
164	A stacked polymer film for robust superhydrophobic fabrics. <i>Polymer Chemistry</i> , 2013 , 4, 1664	4.9	86
163	Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. <i>Biomaterials</i> , 2014 , 35, 9811-9823	15.6	85
162	A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices. <i>Lab on A Chip</i> , 2009 , 9, 411-6	7.2	84
161	Patterning nanodomains with orthogonal functionalities: solventless synthesis of self-sorting surfaces. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14424-5	16.4	84
160	Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System. <i>Nano Letters</i> , 2019 , 19, 839-849	11.5	84
159	Chondroitin Sulfate-Based Biomineralizing Surface Hydrogels for Bone Tissue Engineering. <i>ACS Applied Materials & District Materials & </i>	9.5	78
158	NeuronMuscle Interfaces: Matrix Topography Regulates Synaptic Transmission at the Neuromuscular Junction (Adv. Sci. 6/2019). <i>Advanced Science</i> , 2019 , 6, 1970032	13.6	78

(2013-2015)

157	Hydrogel-laden paper scaffold system for origami-based tissue engineering. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15426-31	11.5	74
156	Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits. <i>ACS Applied Materials & Discrete Stretchable Circuits</i> . <i>ACS Applied Materials & Discrete Strete Stretchable</i> . 8, 15459-65	9.5	7 <u>2</u>
155	Electrochemical investigation of PEDOT films deposited via CVD for electrochromic applications. <i>Synthetic Metals</i> , 2007 , 157, 894-898	3.6	70
154	Springtail-inspired superomniphobic surface with extreme pressure resistance. <i>Science Advances</i> , 2018 , 4, eaat4978	14.3	69
153	Organic flash memory on various flexible substrates for foldable and disposable electronics. <i>Nature Communications</i> , 2017 , 8, 725	17.4	62
152	Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. <i>Acta Biomaterialia</i> , 2014 , 10, 3007-17	10.8	61
151	Doping level and work function control in oxidative chemical vapor deposited poly (3,4-ethylenedioxythiophene). <i>Applied Physics Letters</i> , 2007 , 90, 152112	3.4	61
150	Initiated Chemical Vapor Deposition: A Versatile Tool for Various Device Applications. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700622	3.5	54
149	An effective, cost-efficient extraction method of biomass from wet microalgae with a functional polymeric membrane. <i>Green Chemistry</i> , 2014 , 16, 312-319	10	52
148	Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation. <i>Advanced Healthcare Materials</i> , 2016 , 5, 137-45	10.1	52
147	Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water. <i>ACS Applied Materials & District Action Section</i> , 9, 19736-19745	9.5	49
146	Flexible Nonvolatile Polymer Memory Array on Plastic Substrate via Initiated Chemical Vapor Deposition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 12951-8	9.5	49
145	Electroconductive nanoscale topography for enhanced neuronal differentiation and electrophysiological maturation of human neural stem cells. <i>Nanoscale</i> , 2017 , 9, 18737-18752	7.7	48
144	A Surface Tailoring Method of Ultrathin Polymer Gate Dielectrics for Organic Transistors: Improved Device Performance and the Thermal Stability Thereof. <i>Advanced Functional Materials</i> , 2015 , 25, 4462-4	14 ¹ 59 ⁶	48
143	PDMS-based turbulent microfluidic mixer. <i>Lab on A Chip</i> , 2015 , 15, 1727-35	7.2	48
142	Series of Liquid Separation System Made of Homogeneous Copolymer Films with Controlled Surface Wettability. <i>Chemistry of Materials</i> , 2015 , 27, 3441-3449	9.6	47
141	Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering. <i>Acta Biomaterialia</i> , 2013 , 9, 7691-8	10.8	47
140	A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices. <i>Lab on A Chip</i> , 2013 , 13, 1266-72	7.2	47

139	Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics. <i>Nano Letters</i> , 2017 , 17, 6443-6452	11.5	47
138	Chondrogenic priming adipose-mesenchymal stem cells for cartilage tissue regeneration. <i>Pharmaceutical Research</i> , 2011 , 28, 1395-405	4.5	45
137	Simple and reliable method to incorporate the Janus property onto arbitrary porous substrates. <i>ACS Applied Materials & Distraction (Control of the Control </i>	9.5	44
136	Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-k, Ultrathin Polymer Gate Dielectrics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 20808-20817	9.5	44
135	Solvent-free modification of surfaces with polymers: The case for initiated and oxidative chemical vapor deposition (CVD). <i>AICHE Journal</i> , 2011 , 57, 276-285	3.6	42
134	Systematic control of the electrical conductivity of poly (3,4-ethylenedioxythiophene) via oxidative chemical vapor deposition (oCVD). <i>Surface and Coatings Technology</i> , 2007 , 201, 9406-9412	4.4	42
133	A vapor-phase deposited polymer film to improve the adhesion of electroless-deposited copper layer onto various kinds of substrates. <i>Langmuir</i> , 2014 , 30, 916-21	4	40
132	Hoop stress-assisted three-dimensional particle focusing under viscoelastic flow. <i>Rheologica Acta</i> , 2014 , 53, 927-933	2.3	38
131	Nanothin Coculture Membranes with Tunable Pore Architecture and Thermoresponsive Functionality for Transfer-Printable Stem Cell-Derived Cardiac Sheets. <i>ACS Nano</i> , 2015 , 9, 10186-202	16.7	37
130	Memristive Logic-in-Memory Integrated Circuits for Energy-Efficient Flexible Electronics. <i>Advanced Functional Materials</i> , 2018 , 28, 1704725	15.6	37
129	Oxidative chemical vapor deposition (oCVD) of patterned and functional grafted conducting polymer nanostructures. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3968		35
128	Scalable nanopillar arrays with layer-by-layer patterned overt and covert images. <i>Advanced Materials</i> , 2014 , 26, 6119-24	24	34
127	Paper Electronics: Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper (Adv. Mater. 31/2011). <i>Advanced Materials</i> , 2011 , 23, 3499-3499	24	34
126	A Directly Patternable, Click-Active Polymer Film via Initiated Chemical Vapor Deposition. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1648-1654	4.8	34
125	A Highly Sensitive Molecular Detection Platform for Robust and Facile Diagnosis of Middle East Respiratory Syndrome (MERS) Corona Virus. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2168-73	10.1	34
124	Conformal phase masks made of polyurethane acrylate with optimized elastic modulus for 3D nanopatterning. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 2316	7.1	33
123	Hydrogel Functionalized Janus Membrane for Skin Regeneration. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1600795	10.1	32
122	Zero-static-power nonvolatile logic-in-memory circuits for flexible electronics. <i>Nano Research</i> , 2017 , 10, 2459-2470	10	31

121	Vapor-Phase Deposited Ultrathin Polymer Gate Dielectrics for High-Performance Organic Thin Film Transistors. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500209	6.4	31
120	One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers. <i>Science Advances</i> , 2020 , 6, eabb5320	14.3	30
119	Synthesis of Ultrathin, Homogeneous Copolymer Dielectrics to Control the Threshold Voltage of Organic Thin-Film Transistors. <i>Advanced Functional Materials</i> , 2016 , 26, 6574-6582	15.6	30
118	Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli. <i>Microbial Biotechnology</i> , 2017 , 10, 1353-1364	6.3	29
117	Low-Power Nonvolatile Charge Storage Memory Based on MoS2 and an Ultrathin Polymer Tunneling Dielectric. <i>Advanced Functional Materials</i> , 2017 , 27, 1703545	15.6	29
116	Total integrated slidable and valveless solid phase extraction-polymerase chain reaction-capillary electrophoresis microdevice for mini Y chromosome short tandem repeat genotyping. <i>Biosensors and Bioelectronics</i> , 2016 , 78, 489-496	11.8	28
115	Organic/inorganic multilayer thin film encapsulation via initiated chemical vapor deposition and atomic layer deposition for its application to organic solar cells. <i>Korean Journal of Chemical Engineering</i> , 2017 , 34, 892-897	2.8	27
114	Biofunctionalized titanium with anti-fouling resistance by grafting thermo-responsive polymer brushes for the prevention of peri-implantitis. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5161-5165	7.3	26
113	Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators. <i>ACS Applied Materials & Distributed Materials & </i>	9.5	26
112	Generation of functionalized polymer nanolayer on implant surface via initiated chemical vapor deposition (iCVD). <i>Journal of Colloid and Interface Science</i> , 2015 , 439, 34-41	9.3	26
111	Thermosensitive, Stretchable, and Piezoelectric Substrate for Generation of Myogenic Cell Sheet Fragments from Human Mesenchymal Stem Cells for Skeletal Muscle Regeneration. <i>Advanced Functional Materials</i> , 2017 , 27, 1703853	15.6	24
110	A Low-Voltage Organic Complementary Inverter with High Operation Stability and Flexibility Using an Ultrathin iCVD Polymer Dielectric and a Hybrid Encapsulation Layer. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500385	6.4	24
109	Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric. <i>Scientific Reports</i> , 2016 , 6, 26121	4.9	24
108	Spontaneous Generation of a Molecular Thin Hydrophobic Skin Layer on a Sub-20 nm, High-Polymer Dielectric for Extremely Stable Organic Thin-Film Transistor Operation. <i>ACS Applied Materials & Description (Materials & Desc</i>	9.5	23
107	A Superamphiphobic Sponge with Mechanical Durability and a Self-Cleaning Effect. <i>Scientific Reports</i> , 2016 , 6, 29993	4.9	22
106	Control of Reversible Self-Bending Behavior in Responsive Janus Microstrips. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 8782-8	9.5	22
105	Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. <i>Materials Science and Engineering C</i> , 2019 , 100, 949-958	8.3	21
104	Robust Thin Film Surface with a Selective Antibacterial Property Enabled via a Cross-Linked Ionic Polymer Coating for Infection-Resistant Medical Applications. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2614-2622	5.5	21

103	Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. <i>Journal of Colloid and Interface Science</i> , 2015 , 460, 189-99	9.3	20
102	Site-specific immobilization of proteins on non-conventional substrates via solvent-free initiated chemical vapour deposition (iCVD) process. <i>Polymer Chemistry</i> , 2014 , 5, 4459	4.9	20
101	A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes. <i>ACS Applied Materials & District Membranes</i> . <i>ACS Applied Materials & District Membranes</i> .	9.5	20
100	A Single-Chamber System of Initiated Chemical Vapor Deposition and Atomic Layer Deposition for Fabrication of Organic/Inorganic Multilayer Films . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600819	3.5	19
99	Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects. <i>Nature Communications</i> , 2019 , 10, 2424	17.4	19
98	Low-Power, Flexible Nonvolatile Organic Transistor Memory Based on an Ultrathin Bilayer Dielectric Stack. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800799	6.4	19
97	A Surface-Tailoring Method for Rapid Non-Thermosensitive Cell-Sheet Engineering via Functional Polymer Coatings. <i>Advanced Materials</i> , 2020 , 32, e1907225	24	18
96	A Sub-minute Curable Nanoadhesive with High Transparency, Strong Adhesion, and Excellent Flexibility. <i>Macromolecules</i> , 2018 , 51, 992-1001	5.5	18
95	Application of monodirectional Janus patch to oromucosal delivery system. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2229-36	10.1	18
94	Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode. <i>2D Materials</i> , 2015 , 2, 044013	5.9	18
93	Distinct Mechanosensing of Human Neural Stem Cells on Extremely Limited Anisotropic Cellular Contact. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 33891-33900	9.5	18
92	Synthesis of single-walled carbon nanotube-incorporated polymer hydrogels via click chemistry. <i>Polymer Chemistry</i> , 2012 , 3, 2451	4.9	17
91	Novel Vapor-Phase Synthesis of Flexible, Homogeneous Organic-Inorganic Hybrid Gate Dielectric with sub 5 nm Equivalent Oxide Thickness. <i>ACS Applied Materials & Dielectric Materials &</i>	3 ² 1·5	17
90	Rollable Microfluidic Systems with Microscale Bending Radius and Tuning of Device Function with Reconfigurable 3D Channel Geometry. <i>ACS Applied Materials & Device Function With Materials & Device Function With Reconfigurable 3D Channel Geometry.</i>	9.5	16
89	Large-Scale, Low-Power Nonvolatile Memory Based on Few-Layer MoS2 and Ultrathin Polymer Dielectrics. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800688	6.4	16
88	Ultrathin ZrO-Organic Hybrid Dielectric (EOT 3.2 nm) via Initiated Chemical Vapor Deposition for High-Performance Flexible Electronics. <i>ACS Applied Materials & Dielectronics</i> , 2019, 11, 44513-44520	9.5	16
87	High-performance thin H:SiON OLED encapsulation layer deposited by PECVD at low temperature <i>RSC Advances</i> , 2018 , 9, 58-64	3.7	15
86	Matrix Topography Regulates Synaptic Transmission at the Neuromuscular Junction. <i>Advanced Science</i> , 2019 , 6, 1801521	13.6	15

Surface-Localized Sealing of Porous Ultralow-k Dielectric Films with Ultrathin (. ACS Nano, 2017, 11, 7841: 48,4715 85 Direct Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with 84 1.9 15 Enhanced Capturing Efficiency. Macromolecular Research, 2020, 28, 249-256 Facilitated embedding of silver nanowires into conformally-coated iCVD polymer films deposited 83 7.7 14 on cloth for robust wearable electronics. Nanoscale, 2017, 9, 3399-3407 Facile Fabrication of High-Definition Hierarchical Wrinkle Structures for Investigating the Geometry-Sensitive Fate Commitment of Human Neural Stem Cells. ACS Applied Materials & Commitment of Human Neural Stem Cells. 82 9.5 14 Interfaces, **2019**, 11, 17247-17255 reliable Synthesis of Monodisperse Microparticles: Prevention of Oxygen Diffusion and Organic Solvents Using Conformal Polymeric Coating onto Poly(dimethylsiloxane) Micromold. Langmuir, 81 4 14 2013, 29, 3474-81 Graphene electrode with tunable charge transport in thin-film transistors. Nano Research, 2018, 11, 274-286 80 14 Vapor-phase synthesis of sub-15 nm hybrid gate dielectrics for organic thin film transistors. Journal 79 7.1 13 of Materials Chemistry C, **2017**, 5, 4463-4470 Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence 78 13 14.3 mechanisms. Science Advances, 2020, 6, eaav7416 Polymer Thin Films with Tunable Acetylcholine-like Functionality Enable Long-Term Culture of 16.7 13 77 Primary Hippocampal Neurons. ACS Nano, 2016, 10, 9909-9918 Influence of adjusting the inlet channel confluence angle on mixing behaviour in inertial 2.8 76 13 microfluidic mixers. Microfluidics and Nanofluidics, 2017, 21, 1 A directly patternable click-active polymer film via initiated chemical vapor deposition (iCVD). Thin 2.2 13 75 Solid Films, 2009, 517, 3606-3611 All-Solid-State Ion Synaptic Transistor for Wafer-Scale Integration with Electrolyte of a Nanoscale 15.6 13 74 Thickness. *Advanced Functional Materials*, **2021**, 31, 2010971 A hydrogel-coated membrane for highly efficient separation of microalgal bio-lipid. Korean Journal 2.8 73 13 of Chemical Engineering, 2018, 35, 1319-1327 An efficient isolation of foodborne pathogen using surface-modified porous sponge. Food 8.5 12 72 Chemistry, 2019, 270, 445-451 Heavily Crosslinked, High-k Ultrathin Polymer Dielectrics for Flexible, Low-Power Organic Thin-Film 6.4 71 12 Transistors (OTFTs). Advanced Electronic Materials, 2020, 6, 2000314 Solvent-Free Deposition of Ultrathin Copolymer Films with Tunable Viscoelasticity for Application 70 9.5 12 to Pressure-Sensitive Adhesives. ACS Applied Materials & Distriction (No. 32668-32677) A monolithic integration of robust, water-/oil-repellent layer onto multilayer encapsulation films 69 3.7 11 for organic electronic devices. RSC Advances, 2015, 5, 68485-68492 Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and 68 14.3 11 bioelectronic devices. Science Advances, 2020, 6,

67	Polymer Thin Film-Induced Tumor Spheroids Acquire Cancer Stem Cell-like Properties. <i>Cancer Research</i> , 2018 , 78, 6890-6902	10.1	11
66	Efficient organic photomemory with photography-ready programming speed. <i>Scientific Reports</i> , 2016 , 6, 30536	4.9	10
65	Conformal 3D Nanopatterning by Block Copolymer Lithography with Vapor-Phase Deposited Neutral Adlayer. <i>ACS Nano</i> , 2019 , 13, 13092-13099	16.7	10
64	A thin film encapsulation layer fabricated via initiated chemical vapor deposition and atomic layer deposition. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	10
63	Surface-Modified Mesh Filter for Direct Nucleic Acid Extraction and its Application to Gene Expression Analysis. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700642	10.1	10
62	Coating of an antimicrobial peptide on solid substrate via initiated chemical vapor deposition. Journal of Industrial and Engineering Chemistry, 2018, 58, 51-56	6.3	9
61	Tuning the electrode work function via a vapor-phase deposited ultrathin polymer film. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 831-839	7.1	9
60	Extracellular matrix-immobilized nanotopographical substrates for enhanced myogenic differentiation. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2015 , 103, 1258-6	5 ∂ ·5	9
59	Antibacterial Nanopillar Array for an Implantable Intraocular Lens. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000447	10.1	9
58	Stretchable active matrix of oxide thin-film transistors with monolithic liquid metal interconnects. <i>Applied Physics Express</i> , 2018 , 11, 126501	2.4	9
57	Synthesis of a series of biodegradable poly(butylene carbonate-co-isophthalate) random copolymers derived from CO2-based comonomers for sustainable packaging. <i>Green Chemistry</i> , 2020 , 22, 4570-4580	10	8
56	A High-Performance Top-Gated Graphene Field-Effect Transistor with Excellent Flexibility Enabled by an iCVD Copolymer Gate Dielectric. <i>Small</i> , 2018 , 14, 1703035	11	8
55	Systematic Control of Negative Transconductance in Organic Heterojunction Transistor for High-Performance, Low-Power Flexible Ternary Logic Circuits. <i>Small</i> , 2021 , 17, e2103365	11	8
54	Vapor-phase deposition of the fluorinated copolymer gate insulator for the p-type organic thin-film transistor. <i>Journal of Information Display</i> , 2016 , 17, 43-49	4.1	8
53	Ultrathin and Bifunctional Polymer-Nanolayer-Embedded Separator to Simultaneously Alleviate Li Dendrite Growth and Polysulfide Crossover in Liß Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 611-	622 ¹	8
52	Long-Term Retention of Low-Power, Nonvolatile Organic Transistor Memory Based on Ultrathin, Trilayered Dielectric Containing Charge Trapping Functionality. <i>Advanced Functional Materials</i> , 2020 , 30, 2004665	15.6	7
51	Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. <i>Npj Flexible Electronics</i> , 2021 , 5,	10.7	7
50	Initiated Chemical Vapor Deposition of Polymer Films at High Process Temperature for the Fabrication of Organic/Inorganic Multilayer Thin Film Encapsulation . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600870	3.5	6

Stimulus-Responsive Anti-Oxidizing Drug Crystals and their Ecological Implication. Small, 2019, 15, e1900765 6 49 Three-dimensional clustering of Janus cylinders by convex curvature and hydrophobic interactions. 48 3.6 6 Soft Matter, **2015**, 11, 4952-61 Synthesis of a Stretchable but Superhydrophobic Polymer Thin Film with Conformal Coverage and 6 9.6 47 Optical Transparency. Chemistry of Materials, 2021, 33, 1314-1320 Three-Dimensional Spheroid Culture on Polymer-Coated Surface Potentiate Stem Cell Functions via 46 Enhanced Cell-Extracellular Matrix Interactions. ACS Biomaterials Science and Engineering, 2020, 6, 2240- $\overline{2250}$ A biofunctionalized viral delivery patch for spatially defined transfection. Chemical Communications 5.8 45 4 , **2019**, 55, 2317-2320 Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device. 44 2.5 4 BioTechniques, 2020, 69, 404-409 High-Fidelity, Sub-5 nm Patterns from High-IBlock Copolymer Films with Vapor-Deposited Ultrathin, Cross-Linked Surface-Modification Layers. Macromolecular Rapid Communications, 2020, 4.8 4 43 41, e1900514 A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for 42 3.1 4 Biomedical Device Applications. Biotechnology and Bioprocess Engineering, 2021, 26, 1-14 Thermally Fast-Curable, "Sticky" Nanoadhesive for Strong Adhesion on Arbitrary Substrates. ACS 3 41 9.5 Applied Materials & Interfaces, 2017, 9, 40868-40877 Parylene based thin-film microfluidic lens array fabricated by iCVD nano-adhesive bonding. Polymer 40 3.9 , **2019**, 181, 121763 Polymer-Coated Surface as an Enzyme-Free Culture Platform to Improve Human Mesenchymal 39 Stem Cell (hMSC) Characteristics in Extended Passaging.. ACS Applied Bio Materials, 2020, 3, 7654-7665 $^{4.1}$ 3 Remodeling of Adhesion Network within Cancer Spheroids via Cell-Polymer Interaction. ACS 38 5.5 Biomaterials Science and Engineering, **2020**, 6, 5632-5644 Multi-Stage Organic Logic Circuits Using Via-Hole-Less Metal Interconnects. IEEE Electron Device 37 4.4 3 Letters, 2020, 41, 1685-1687 Large-Area, Conformal, and Uniform Synthesis of Hybrid Polymeric Film via Initiated Chemical 36 3.9 Vapor Deposition. Macromolecular Materials and Engineering, 2021, 306, 2000608 A Sub-Micron-Thick stretchable adhesive layer for the lamination of arbitrary elastomeric 35 14.7 3 substrates with enhanced adhesion stability. Chemical Engineering Journal, 2022, 429, 132250 Multifunctional Printable Micropattern Array for Digital Nucleic Acid Assay for Microbial Pathogen 9.5 34 Detection. ACS Applied Materials & Interfaces, 2021, 13, 3098-3108 Transparent, Ultrahigh-Refractive Index Polymer Film (~1.97) with Minimal Birefringence ([] ACS 33 9.5 3 Applied Materials & Therfaces, **2021**, 13, 61629-61637 Floating gate memory based on MoS2 channel and iCVD polymer tunneling dielectric 2016, 32 2

31	In situ solvent recovery by using hydrophobic/oleophilic filter during wet lipid extraction from microalgae. <i>Bioprocess and Biosystems Engineering</i> , 2019 , 42, 1447-1455	3.7	2
30	Laminated film composites of multilayered plastic film and inorganic polymer binder as an alternative to transparent and hard glass. <i>Polymer Journal</i> , 2013 , 45, 685-689	2.7	2
29	A Conformal Vapor-Phase Deposition of Poly(2-(perfluorohexyl)ethyl methacrylate) and the Hydrophobic Properties Thereof. <i>Nanoscience and Nanotechnology Letters</i> , 2015 , 7, 45-49	0.8	2
28	Surface-Modified Filter-Based Continuous Recovery of Microalgal Lipid-in-Solvent with High Recovery Efficiency, Long-Term Stability, and Cost Competitiveness <i>ACS Applied Bio Materials</i> , 2020 , 3, 263-272	4.1	2
27	Hf- and Ti-Based Organic/Inorganic Hybrid Dielectrics Synthesized via Chemical Vapor Phase for Advanced Gate Stack in Flexible Electronic Devices. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001197	6.4	2
26	Surface Hydrophobicity Modulates the Key Characteristics of Cancer Spheroids through the Interaction with the Adsorbed Proteins. <i>Advanced Functional Materials</i> , 2021 , 31, 2100775	15.6	2
25	Hybrid Gate Dielectric of MoS2 Transistors for Enhanced Photo-Electronic Stability. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100599	4.6	2
24	Highly Pure, Length-Sorted Boron Nitride Nanotubes by Gel Column Chromatography. <i>Chemistry of Materials</i> , 2021 , 33, 4723-4732	9.6	2
23	Microfluidics-Based Pathogen Detection: A Highly Sensitive Molecular Detection Platform for Robust and Facile Diagnosis of Middle East Respiratory Syndrome (MERS) Corona Virus (Adv. Healthcare Mater. 17/2016). <i>Advanced Healthcare Materials</i> , 2016 , 5, 2146-2146	10.1	2
22	Heparin-mediated electrostatic immobilization of bFGF functional polymer films for enhanced self-renewal of human neural stem cells. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2084-2091	7.3	2
21	Multi-functional logic circuits composed of ultra-thin electrolyte-gated transistors with wafer-scale integration. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 7222-7227	7.1	2
20	Conformal, Wafer-Scale and Controlled Nanoscale Doping of Semiconductors Via the iCVD Process 2018 ,		2
19	Highly Reliable Charge Trap-Type Organic Non-Volatile Memory Device Using Advanced Band-Engineered Organic-Inorganic Hybrid Dielectric Stacks. <i>Advanced Functional Materials</i> , 2021 , 31, 2103291	15.6	2
18	Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors <i>Nature Communications</i> , 2022 , 13, 2305	17.4	2
17	3D Hierarchical Polyaniline-Metal Hybrid Nanopillars: Morphological Control and Its Antibacterial Application. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
16	Organic Device Fabrication and Integration with CVD Polymers365-389		1
15	All-in-One DNA Extraction Tube for Facilitated Real-Time Detection of Infectious Pathogens. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100430	10.1	1
14	Triboelectric energy harvester with an ultra-thin tribo-dielectric layer by initiated CVD and investigation of underlying physics in the triboelectricity 2016 ,		1

LIST OF PUBLICATIONS

13	Short-chain fluorocarbon-based polymeric coating with excellent nonwetting ability against chemical warfare agents <i>RSC Advances</i> , 2022 , 12, 7773-7779	3.7	1
12	A highly bendable thin film encapsulation by the modulation of thermally induced interfacial residual stress. <i>Applied Surface Science</i> , 2022 , 598, 153874	6.7	1
11	A modulus-engineered multi-layer polymer film with mechanical robustness for the application to highly deformable substrate platform in stretchable electronics. <i>Chemical Engineering Journal</i> , 2022 , 431, 134074	14.7	O
10	VEGF-overexpressed Human Tonsil-derived Mesenchymal Stem Cells with PEG/HA-based Cryogels for Therapeutic Angiogenesis. <i>Biotechnology and Bioprocess Engineering</i> , 2022 , 27, 17-29	3.1	0
9	Synthesis of a Stretchable Polyampholyte Hydrophilic Film with Compositional Gradient for Long-Term Stable, Substrate-Independent Fouling-Resistant Coating. <i>Advanced Functional Materials</i> ,21	13253	0
8	Highly Reliable Synaptic Cell Array Based on OrganicIhorganic Hybrid Bilayer Stack toward Precise Offline Learning. <i>Advanced Intelligent Systems</i> ,2200018	6	0
7	Antioxidants: Stimulus-Responsive Anti-Oxidizing Drug Crystals and their Ecological Implication (Small 21/2019). <i>Small</i> , 2019 , 15, 1970112	11	
6	P-132: A Sticky, Thermo-curable Nano-Adhesive for Future Flexible Display Applications: Ultrathin, Soft, and Fast-acting. <i>Digest of Technical Papers SID International Symposium</i> , 2019 , 50, 1610-1612	0.5	
5	Nanopatterning: Scalable Nanopillar Arrays with Layer-by-Layer Patterned Overt and Covert Images (Adv. Mater. 35/2014). <i>Advanced Materials</i> , 2014 , 26, 6200-6200	24	
4	Thin-Film Transistors: Synthesis of Ultrathin, Homogeneous Copolymer Dielectrics to Control the Threshold Voltage of Organic Thin-Film Transistors (Adv. Funct. Mater. 36/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6672-6672	15.6	
3	Performance enhancement of p-type organic thin-film transistors by surface modification of hybrid dielectrics. <i>Organic Electronics</i> , 2021 , 96, 106250	3.5	
2	A Multiple-State Ion Synaptic Transistor Applicable to Abnormal Car Detection with Transfer Learning. <i>Advanced Intelligent Systems</i> ,2100231	6	
1	Engineering of Surface Energy of Cell-Culture Platform to Enhance the Growth and Differentiation of Dendritic Cells via Vapor-Phase Synthesized Functional Polymer Films Small, 2022, e2106648	11	