
Jialin Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1226341/publications.pdf Version: 2024-02-01

Ιιλιινι Υιι

#	Article	lF	CITATIONS
1	Barley stripe mosaic virus Î ³ b protein targets thioredoxin h-type 1 to dampen salicylic acid-mediated defenses. Plant Physiology, 2022, 189, 1715-1727.	4.8	7
2	Palmitoylation of γb protein directs a dynamic switch between <i>Barley stripe mosaic virus</i> replication and movement. EMBO Journal, 2022, 41, .	7.8	3
3	Tobacco Necrosis Virus-A ^C Single Coat Protein Amino Acid Substitutions Determine Host-Specific Systemic Infections of <i>Nicotiana benthamiana</i> and Soybean. Molecular Plant-Microbe Interactions, 2021, 34, 49-61.	2.6	11
4	The serine/threonine/tyrosine kinase STY46 defends against hordeivirus infection by phosphorylating γb protein. Plant Physiology, 2021, 186, 715-730.	4.8	19
5	<i>Barley stripe mosaic virus</i> γb protein disrupts chloroplast antioxidant defenses to optimize viral replication. EMBO Journal, 2021, 40, e107660.	7.8	27
6	Functional Characterization of RNA Silencing Suppressor P0 from Pea Mild Chlorosis Virus. International Journal of Molecular Sciences, 2020, 21, 7136.	4.1	6
7	Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses, 2020, 12, 310.	3.3	18
8	Casein Kinase 1 Regulates Cytorhabdovirus Replication and Transcription by Phosphorylating a Phosphoprotein Serine-Rich Motif. Plant Cell, 2020, 32, 2878-2897.	6.6	17
9	Interaction between Brassica yellows virus silencing suppressor PO and plant SKP1 facilitates stability of PO <i>inÂvivo</i> against degradation by proteasome and autophagy pathways. New Phytologist, 2019, 222, 1458-1473.	7.3	41
10	<i>Barley stripe mosaic virus</i> infection requires PKAâ€mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. New Phytologist, 2018, 218, 1570-1585.	7.3	40
11	Barley Stripe Mosaic Virus γb Interacts with Glycolate Oxidase and Inhibits Peroxisomal ROS Production to Facilitate Virus Infection. Molecular Plant, 2018, 11, 338-341.	8.3	46
12	Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cellâ€toâ€cell movement of <i>Barley stripe mosaic virus</i> . Molecular Plant Pathology, 2018, 19, 1222-1237.	4.2	41
13	<i>Barley stripe mosaic virus</i> γb Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction. Plant Cell, 2018, 30, 1582-1595.	6.6	114
14	The Barley stripe mosaic virus Î ³ b protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathogens, 2017, 13, e1006319.	4.7	65
15	Phosphorylation of Beet black scorch virus coat protein by PKA is required for assembly and stability of virus particles. Scientific Reports, 2015, 5, 11585.	3.3	26
16	Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection. PLoS ONE, 2015, 10, e0132277.	2.5	11
17	Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots. Journal of Experimental Botany, 2015, 66, 4733-4747.	4.8	44
18	Deep Sequencing–Based Transcriptome Profiling Reveals Comprehensive Insights into the Responses of Nicotiana benthamiana to Beet necrotic yellow vein virus Infections Containing or Lacking RNA4. PLoS ONE, 2014, 9, e85284.	2.5	26

Jialin Yu

#	Article	IF	CITATIONS
19	Two distinct sites are essential for virulent infection and support of variant satellite RNA replication in spontaneous beet black scorch virus variants. Journal of General Virology, 2012, 93, 2718-2728.	2.9	10
20	Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein. Journal of General Virology, 2012, 93, 2729-2739.	2.9	33
21	Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR. PLoS ONE, 2012, 7, e46451.	2.5	337
22	A High Throughput Barley Stripe Mosaic Virus Vector for Virus Induced Gene Silencing in Monocots and Dicots. PLoS ONE, 2011, 6, e26468.	2.5	253
23	Competition Between <i>Cucumber Mosaic Virus</i> Subgroup I and II Isolates in Tobacco. Journal of Phytopathology, 2009, 157, 457-464.	1.0	7
24	Triple Gene Block Protein Interactions Involved in Movement of Barley Stripe Mosaic Virus. Journal of Virology, 2008, 82, 4991-5006.	3.4	61
25	Analysis of the subgenomic RNAs and the small open reading frames of Beet black scorch virus. Journal of General Virology, 2006, 87, 3077-3086.	2.9	30