
Minna Aurela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1226250/publications.pdf Version: 2024-02-01

MINNA ALIDELA

#	Article	IF	CITATIONS
1	Aerosol particle characteristics measured in the United Arab Emirates and their response to mixing in the boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 481-503.	1.9	5
2	Characterization of particle sources and comparison of different particle metrics in an urban detached housing area, Finland. Atmospheric Environment, 2022, 272, 118939.	1.9	3
3	Exhaust emissions from a prototype non-road natural gas engine. Fuel, 2022, 316, 123387.	3.4	2
4	Experimental and numerical analysis of fine particle and soot formation in a modern 100 MW pulverized biomass heating plant. Combustion and Flame, 2022, 240, 111960.	2.8	13
5	Suitability of Different Methods for Measuring Black Carbon Emissions from Marine Engines. Atmosphere, 2022, 13, 31.	1.0	5
6	Intercomparison Experiment of Water-Insoluble Carbonaceous Particles in Snow in a High-Mountain Environment (1598 m a.s.l.). Geosciences (Switzerland), 2022, 12, 197.	1.0	1
7	Black carbon toxicity dependence on particle coating: Measurements with a novel cell exposure method. Science of the Total Environment, 2022, 838, 156543.	3.9	16
8	Investigation of new particle formation mechanisms and aerosol processes at Marambio Station, Antarctic Peninsula. Atmospheric Chemistry and Physics, 2022, 22, 8417-8437.	1.9	7
9	Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland. Atmospheric Chemistry and Physics, 2021, 21, 1173-1189.	1.9	33
10	In-depth characterization of submicron particulate matter inter-annual variations at a street canyon site in northern Europe. Atmospheric Chemistry and Physics, 2021, 21, 6297-6314.	1.9	25
11	Variation of Absorption Ãngström Exponent in Aerosols From Different Emission Sources. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034094.	1.2	37
12	Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison. Atmospheric Chemistry and Physics, 2021, 21, 9931-9953.	1.9	13
13	Household solid waste combustion with wood increases particulate trace metal and lung deposited surface area emissions. Journal of Environmental Management, 2021, 293, 112793.	3.8	12
14	Sources of black carbon at residential and traffic environments obtained by two source apportionment methods. Atmospheric Chemistry and Physics, 2021, 21, 14851-14869.	1.9	25
15	Chemical and physical characterization of oil shale combustion emissions in Estonia. Atmospheric Environment: X, 2021, 12, 100139.	0.8	1
16	Long-term sensor measurements of lung deposited surface area of particulate matter emitted from local vehicular and residential wood combustion sources. Aerosol Science and Technology, 2020, 54, 190-202.	1.5	35
17	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 2020, 135, 105345.	4.8	106
18	Sampling, Filtering, and Analysis Protocols to Detect Black Carbon, Organic Carbon, and Total Carbon in Seasonal Surface Snow in an Urban Background and Arctic Finland (>60° N). Atmosphere, 2020, 11, 923.	1.0	10

Minna Aurela

#	Article	IF	CITATIONS
19	Utilization of scattering and absorption-based particulate matter sensors in the environment impacted by residential wood combustion. Journal of Aerosol Science, 2020, 150, 105671.	1.8	20
20	Trends and source apportionment of atmospheric heavy metals at a subarctic site during 1996–2018. Atmospheric Environment, 2020, 236, 117644.	1.9	13
21	Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmospheric Measurement Techniques, 2020, 13, 2413-2423.	1.2	88
22	Traffic-originated nanocluster emission exceeds H ₂ SO ₄ -driven photochemical new particle formation in an urban area. Atmospheric Chemistry and Physics, 2020, 20, 1-13.	1.9	36
23	Long-term sub-micrometer aerosol chemical composition in the boreal forest: inter- and intra-annual variability. Atmospheric Chemistry and Physics, 2020, 20, 3151-3180.	1.9	26
24	Physical Characteristics of Particle Emissions from a Medium Speed Ship Engine Fueled with Natural Gas and Low-Sulfur Liquid Fuels. Environmental Science & Technology, 2020, 54, 5376-5384.	4.6	30
25	Laboratory and field evaluation of the Aerosol Dynamics Inc. concentrator (ADIc) for aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 3907-3920.	1.2	3
26	Characterization of laboratory and real driving emissions of individual Euro 6 light-duty vehicles – Fresh particles and secondary aerosol formation. Environmental Pollution, 2019, 255, 113175.	3.7	38
27	Emission measurements with gravimetric impactors and electrical devices: An aerosol instrument comparison. Aerosol Science and Technology, 2019, 53, 526-539.	1.5	8
28	Applicability of Optical and Diffusion Charging-Based Particulate Matter Sensors to Urban Air Quality Measurements. Aerosol and Air Quality Research, 2019, 19, 1024-1039.	0.9	22
29	Considerations in analysing elemental carbon from marine engine exhaust using residual, distillate and biofuels. Journal of Aerosol Science, 2018, 126, 191-204.	1.8	16
30	Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmospheric Environment, 2018, 190, 87-98.	1.9	118
31	Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmospheric Environment, 2017, 158, 60-75.	1.9	38
32	composition of ambient and fresh biomass burning aerosols at a savannah site, South Africa. South African Journal of Science, 2016, 112, 8.	0.3	14
33	Chemical and Source Characterization of Submicron Particles at Residential and Traffic Sites in the Helsinki Metropolitan Area, Finland. Aerosol and Air Quality Research, 2015, 15, 1213-1226.	0.9	29
34	Wintertime Aerosol Chemistry in Sub-Arctic Urban Air. Aerosol Science and Technology, 2014, 48, 313-323.	1.5	26
35	Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. Journal of Aerosol Science, 2013, 56, 61-77.	1.8	89
36	Carbonaceous aerosol at a forested and an urban background sites in Southern Finland. Atmospheric Environment, 2011, 45, 1394-1401.	1.9	31

Minna Aurela

#	Article	IF	CITATIONS
37	Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmospheric Chemistry and Physics, 2010, 10, 4253-4271.	1.9	126
38	High-performance anion-exchange chromatography–mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric fine particulate matter. Analytical and Bioanalytical Chemistry, 2010, 398, 2253-2264.	1.9	69
39	Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe. Science of the Total Environment, 2010, 408, 2527-2542.	3.9	90
40	Long-range transport episodes of fine particles in southern Finland during 1999–2007. Atmospheric Environment, 2009, 43, 1255-1264.	1.9	63
41	Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics, 2008, 8, 6281-6295.	1.9	258
42	Size and Composition of Airborne Particles from Pavement Wear, Tires, and Traction Sanding. Environmental Science & Technology, 2005, 39, 699-706.	4.6	160
43	Chemical composition of atmospheric aerosol in the European subarctic: Contribution of the Kola Peninsula smelter areas, central Europe, and the Arctic Ocean. Journal of Geophysical Research, 1999, 104, 23681-23696.	3.3	32