Orly Reiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1226103/publications.pdf

Version: 2024-02-01

57631 29081 11,301 115 44 104 citations h-index g-index papers 180 180 180 10524 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nature Communications, 2022, 13, 633.	5.8	28
2	Introducing <i>Oxford Open Neuroscience</i> , 2022, 1, .		O
3	Brain Organization and Human Diseases. Cells, 2022, 11, 1642.	1.8	8
4	Using multi-organ culture systems to study Parkinson's disease. Molecular Psychiatry, 2021, 26, 725-735.	4.1	16
5	Modeling human neuronal migration deficits in 3D. Current Opinion in Neurobiology, 2021, 66, 30-36.	2.0	4
6	Dynamics of cortical progenitors and production of subcerebral neurons are altered in embryos of a maternal inflammation model for autism. Molecular Psychiatry, 2021, 26, 1535-1550.	4.1	19
7	Use of iPSC-derived brain organoids to study human brain evolution. , 2021, , 157-177.		1
8	Editorial: Complement in the Development and Regeneration of the Nervous System. Frontiers in Immunology, 2021, 12, 694810.	2.2	0
9	International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nature Reviews Neurology, 2020, 16, 618-635.	4.9	53
10	Toward Spatial Identities in Human Brain Organoids-on-Chip Induced by Morphogen-Soaked Beads. Bioengineering, 2020, 7, 164.	1.6	15
11	Brain organoids as a model system for human neurodevelopment in health and disease. , 2020, , 205-221.		O
12	Complement System in Brain Architecture and Neurodevelopmental Disorders. Frontiers in Neuroscience, 2020, 14, 23.	1.4	66
13	Nucleokinesis. , 2020, , 305-322.		1
14	Building Bridges Between the Clinic and the Laboratory: A Meeting Review – Brain Malformations: A Roadmap for Future Research. Frontiers in Cellular Neuroscience, 2019, 13, 434.	1.8	3
15	Interplay of LIS1 and MeCP2: Interactions and Implications With the Neurodevelopmental Disorders Lissencephaly and Rett Syndrome. Frontiers in Cellular Neuroscience, 2019, 13, 370.	1.8	12
16	Brain Organoids—A Bottom-Up Approach for Studying Human Neurodevelopment. Bioengineering, 2019, 6, 9.	1.6	45
17	The HERV-K accessory protein Np9 controls viability and migration of teratocarcinoma cells. PLoS ONE, 2019, 14, e0212970.	1.1	32
18	The Interactome of Palmitoyl-Protein Thioesterase 1 (PPT1) Affects Neuronal Morphology and Function. Frontiers in Cellular Neuroscience, 2019, 13, 92.	1.8	25

#	Article	IF	CITATIONS
19	Cortical progenitor biology: key features mediating proliferation versus differentiation. Journal of Neurochemistry, 2018, 146, 500-525.	2.1	77
20	Human brain organoids on a chip reveal the physics of folding. Nature Physics, 2018, 14, 515-522.	6.5	311
21	A Coated Sponge: Toward Neonatal Brain Repair. Cell Stem Cell, 2018, 22, 3-4.	5.2	8
22	Notch Activation by Shootin1 Opposing Activities on 2 Ubiquitin Ligases. Cerebral Cortex, 2018, 28, 3115-3128.	1.6	9
23	An Onâ€Chip Method for Longâ€Term Growth and Realâ€Time Imaging of Brain Organoids. Current Protocols in Cell Biology, 2018, 81, e62.	2.3	14
24	Complement C3 Affects Rac1 Activity in the Developing Brain. Frontiers in Molecular Neuroscience, 2018, 11, 150.	1.4	13
25	Developmental activities of the complement pathway in migrating neurons. Nature Communications, 2017, 8, 15096.	5.8	83
26	Proteomics insights into infantile neuronal ceroid lipofuscinosis (CLN1) point to the involvement of cilia pathology in the disease. Human Molecular Genetics, 2017, 26, 1678-1678.	1.4	14
27	Serping 1/C1 Inhibitor Affects Cortical Development in a Cell Autonomous and Non-cell Autonomous Manner. Frontiers in Cellular Neuroscience, 2017, 11, 169.	1.8	32
28	Reversible Cysteine Acylation Regulates the Activity of Human Palmitoyl-Protein Thioesterase 1 (PPT1). PLoS ONE, 2016, 11, e0146466.	1.1	29
29	Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Development Growth and Differentiation, 2016, 58, 481-491.	0.6	16
30	Regulation of neuronal migration, an emerging topic in autism spectrum disorders. Journal of Neurochemistry, 2016, 136, 440-456.	2.1	89
31	Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Frontiers in Neuroscience, 2015, 9, 53.	1.4	21
32	The Spinal Muscular Atrophy with Pontocerebellar Hypoplasia Gene <i>VRK1</i> Regulates Neuronal Migration through an Amyloid-Î ² Precursor Protein-Dependent Mechanism. Journal of Neuroscience, 2015, 35, 936-942.	1.7	36
33	Passage Number is a Major Contributor to Genomic Structural Variations in Mouse iPSCs. Stem Cells, 2014, 32, 2657-2667.	1.4	40
34	Mark/Par-1 Marking the Polarity of Migrating Neurons. Advances in Experimental Medicine and Biology, 2014, 800, 97-111.	0.8	15
35	Shootin1 Acts in Concert with KIF20B to Promote Polarization of Migrating Neurons. Journal of Neuroscience, 2013, 33, 11932-11948.	1.7	50
36	LIS1 functions in normal development and disease. Current Opinion in Neurobiology, 2013, 23, 951-956.	2.0	87

#	Article	IF	Citations
37	Microtubule dynamics alter the interphase nucleus. Cellular and Molecular Life Sciences, 2013, 70, 1255-1268.	2.4	34
38	Nucleokinesis., 2013,, 261-279.		0
39	LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. Scientifica, 2013, 2013, 1-17.	0.6	43
40	Generation of Topically Transgenic Rats by In utero Electroporation and In vivo Bioluminescence Screening. Journal of Visualized Experiments, 2013, , e50146.	0.2	6
41	Loss of PAFAH1B2 Reduces Amyloid- \hat{l}^2 Generation by Promoting the Degradation of Amyloid Precursor Protein C-Terminal Fragments. Journal of Neuroscience, 2012, 32, 18204-18214.	1.7	23
42	Tau's role in the developing brain: implications for intellectual disability. Human Molecular Genetics, 2012, 21, 1681-1692.	1.4	69
43	Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon. Biology Open, 2012, 1, 220-231.	0.6	13
44	MARK2/Par-1 guides the directionality of neuroblasts migrating to the olfactory bulb. Molecular and Cellular Neurosciences, 2012, 49, 97-103.	1.0	27
45	Use of RNA Interference by In Utero Electroporation to Study Cortical Development: The Example of the Doublecortin Superfamily. Genes, 2012, 3, 759-778.	1.0	6
46	Interkinetic Nuclear Movement in the Ventricular Zone of the Cortex. Journal of Molecular Neuroscience, 2012, 46, 516-526.	1.1	30
47	Linking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein. Journal of Cell Science, 2011, 124, 3989-4000.	1.2	41
48	Stress-Activated Protein Kinase MKK7 Regulates Axon Elongation in the Developing Cerebral Cortex. Journal of Neuroscience, 2011, 31, 16872-16883.	1.7	64
49	Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity. EMBO Journal, 2010, 29, 107-119.	3.5	49
50	PAF-AH catalytic subunits modulate the Wnt pathway in developing GABAergic neurons. Frontiers in Cellular Neuroscience, 2010, 4, .	1.8	22
51	A JIP3-Regulated GSK3β/DCX Signaling Pathway Restricts Axon Branching. Journal of Neuroscience, 2010, 30, 16766-16776.	1.7	51
52	Neuronal Migration and Neurodegeneration: 2 Sides of the Same Coin. Cerebral Cortex, 2009, 19, i42-i48.	1.6	15
53	Polarity Regulation in Migrating Neurons in the Cortex. Molecular Neurobiology, 2009, 40, 1-14.	1.9	46
54	Increased LIS1 expression affects human and mouse brain development. Nature Genetics, 2009, 41, 168-177.	9.4	199

#	Article	lF	CITATIONS
55	Gene trapping: An antibody-dependent approach for verifying integration in your favorite gene. Cellular and Molecular Biology Letters, 2008, 13, 614-20.	2.7	O
56	Antagonistic Effects of Doublecortin and MARK2/Par-1 in the Developing Cerebral Cortex. Journal of Neuroscience, 2008, 28, 13008-13013.	1.7	50
57	Doublecortin Supports the Development of Dendritic Arbors in Primary Hippocampal Neurons. Developmental Neuroscience, 2008, 30, 187-199.	1.0	50
58	Accurate Balance of the Polarity Kinase MARK2/Par-1 Is Required for Proper Cortical Neuronal Migration. Journal of Neuroscience, 2008, 28, 5710-5720.	1.7	100
59	Postnatal alterations of the inhibitory synaptic responses recorded from cortical pyramidal neurons in the Lis1/sLis1 mutant mouse. Molecular and Cellular Neurosciences, 2007, 35, 220-229.	1.0	16
60	Migration Cues Induce Chromatin Alterations. Traffic, 2007, 8, 1521-1529.	1.3	49
61	Site-specific dephosphorylation of doublecortin (DCX) by protein phosphatase 1 (PP1). Molecular and Cellular Neurosciences, 2006, 32, 15-26.	1.0	46
62	Doublecortin-like Kinase Controls Neurogenesis by Regulating Mitotic Spindles and M Phase Progression. Neuron, 2006, 49, 25-39.	3.8	131
63	Variations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar subjects from mediterranean Spain: A preliminary study. Neuroscience, 2006, 139, 1289-1300.	1.1	47
64	Mutations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar disorder: a preliminary study. Annals of General Psychiatry, 2006, 5, 1.	1.2	0
65	Cdk5 checks p27kip1 in neuronal migration. Nature Cell Biology, 2006, 8, 11-13.	4.6	4
66	Lissencephaly 1 Linking to Multiple Diseases: Mental Retardation, Neurodegeneration, Schizophrenia, Male Sterility, and More. NeuroMolecular Medicine, 2006, 8, 547-566.	1.8	37
67	The evolving doublecortin (DCX) superfamily. BMC Genomics, 2006, 7, 188.	1.2	100
68	The DCX Superfamily 1: Common and Divergent Roles for Members of the Mouse DCX Superfamily. Cell Cycle, 2006, 5, 976-983.	1.3	62
69	Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochemical Journal, 2005, 389, 333-341.	1.7	38
70	Similarities and Differences Between the Wnt and Reelin Pathways in the Forming Brain. Molecular Neurobiology, 2005, 31, 117-134.	1.9	8
71	Missense mutations resulting in type 1 lissencephaly. Cellular and Molecular Life Sciences, 2005, 62, 425-434.	2.4	14
72	Novel Functional Features of the LIS-H Domain: Role in Protein Dimerization, Half-Life and Cellular Localization. Cell Cycle, 2005, 4, 1632-1640.	1.3	74

#	Article	IF	Citations
73	HIV-1 Tat interacts with LIS1 protein. Retrovirology, 2005, 2, 6.	0.9	29
74	DCXs Phosphorylation by Not Just aNother Kinase (JNK). Cell Cycle, 2004, 3, 745-749.	1.3	27
75	DCX, a new mediator of the JNK pathway. EMBO Journal, 2004, 23, 823-832.	3.5	200
76	The Structure of the N-Terminal Domain of the Product of the Lissencephaly Gene Lis1 and Its Functional Implications. Structure, 2004, 12, 987-998.	1.6	106
77	DCX's phosphorylation by not just another kinase (JNK). Cell Cycle, 2004, 3, 747-51.	1.3	13
78	A study of the nature of embryonic lethality inLIS1?/? Mice. Molecular Reproduction and Development, 2003, 66, 134-142.	1.0	22
79	LIS1 Missense Mutations. Journal of Biological Chemistry, 2003, 278, 38740-38748.	1.6	29
80	Alternative Splice Variants of Doublecortin-like Kinase Are Differentially Expressed and Have Different Kinase Activities. Journal of Biological Chemistry, 2002, 277, 17696-17705.	1.6	73
81	LIS1, CLIP-170's Key to the Dynein/Dynactin Pathway. Molecular and Cellular Biology, 2002, 22, 3089-3102.	1.1	222
82	LIS1â€"no more no less. Molecular Psychiatry, 2002, 7, 12-16.	4.1	70
83	Pathways of neuronal migration. Nature Genetics, 2002, 32, 341-342.	9.4	1
84	Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6429-6434.	3.3	139
85	Cleavage of Doublecortin-like Kinase by Calpain Releases an Active Kinase Fragment from a Microtubule Anchorage Domain. Journal of Biological Chemistry, 2001, 276, 36397-36403.	1.6	48
86	DCX in PC12 cells: CREB-mediated transcription and neurite outgrowth. Human Molecular Genetics, 2001, 10, 1061-1070.	1.4	33
87	Homologs of the ?- and ?-subunits of mammalian brain platelet-activating factor acetylhydrolase lb in theDrosophila melanogaster genome. , 2000, 39, 1-8.		25
88	Expression of chLIS1, a chicken homolog of LIS1. Development Genes and Evolution, 2000, 210, 51-54.	0.4	3
89	Interaction between LIS1 and doublecortin, two lissencephaly gene products. Human Molecular Genetics, 2000, 9, 2205-2213.	1.4	138
90	Doublecortin mutations cluster in evolutionarily conserved functional domains. Human Molecular Genetics, 2000, 9, 703-712.	1.4	115

#	Article	IF	Citations
91	Doublecortin-like Kinase Is Associated with Microtubules in Neuronal Growth Cones. Molecular and Cellular Neurosciences, 2000, 16, 529-541.	1.0	83
92	LIS1. Neuron, 2000, 28, 633-636.	3.8	56
93	Evidence for the involvement of the hippocampus in the pathophysiology of schizophrenia. European Neuropsychopharmacology, 2000, 10, 389-395.	0.3	66
94	Doublecortin, a Stabilizer of Microtubules. Human Molecular Genetics, 1999, 8, 1599-1610.	1.4	245
95	LIS1 is a microtubule-associated phosphoprotein. FEBS Journal, 1999, 265, 181-188.	0.2	53
96	Analysis of lissencephaly-causingLIS1mutations. FEBS Journal, 1999, 266, 1011-1020.	0.2	33
97	The unfolding story of two lissencephaly genes and brain development. Molecular Neurobiology, 1999, 20, 143-156.	1.9	14
98	Platelet-activating factor (PAF) acetylhydrolase activity, LIS1 expression, and seizures. Journal of Neuroscience Research, 1999, 57, 176-184.	1.3	18
99	KIAA0369, doublecortin-like kinase, is expressed during brain development. Journal of Neuroscience Research, 1999, 58, 567-575.	1.3	72
100	Doublecortin Is a Developmentally Regulated, Microtubule-Associated Protein Expressed in Migrating and Differentiating Neurons. Neuron, 1999, 23, 247-256.	3.8	936
101	LIS1 and platelet-activating factor acetylhydrolase (Ib) catalytic subunits, expression in the mouse oocyte and zygote. FEBS Letters, 1999, 451, 99-102.	1.3	12
102	The lissencephaly gene product Lis1, a protein involved in neuronal migration, interacts with a nuclear movement protein, NudC. Current Biology, 1998, 8, 603-606.	1.8	135
103	Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO Journal, 1997, 16, 6977-6984.	3.5	282
104	Folding of Proteins with WD-Repeats:  Comparison of Six Members of the WD-Repeat Superfamily to the G Protein β Subunit. Biochemistry, 1996, 35, 13985-13994.	1.2	178
105	Function of 14-3-3 proteins. Nature, 1996, 382, 308-308.	13.7	2
106	Lissencephaly gene (LIS1) expression in the CNS suggests a role in neuronal migration. Journal of Neuroscience, 1995, 15, 3730-3738.	1.7	113
107	LIS2,Gene and Pseudogene, Homologous toLIS1(Lissencephaly 1), Located on the Short and Long Arms of Chromosome 2. Genomics, 1995, 30, 251-256.	1.3	17
108	Isolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit-like repeats. Nature, 1993, 364, 717-721.	13.7	1,036

#	Article	IF	CITATIONS
109	Four STR polymorphisms map to a 500 kb region between DXS15 and DXS134. Human Molecular Genetics, 1993, 2, 1503-1503.	1.4	22
110	Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 1991, 65, 905-914.	13.5	3,285
111	The human glucocerebrosidase gene and pseudogene: Structure and evolution. Genomics, 1989, 4, 87-96.	1.3	396
112	Structural Analysis of the Human Glucocerebrosidase Genes. DNA and Cell Biology, 1988, 7, 107-116.	5.1	45
113	Differential expression of the human glucocerebrosidase-coding gene. Gene, 1988, 73, 469-478.	1.0	31
114	EfficientIn VitroandIn VivoExpression of Human Glucocerebrosidase cDNA. DNA and Cell Biology, 1987, 6, 101-108.	5.1	39
115	Isolation of a Miller–Dicker lissencephaly gene containing G protein β-subunit-like repeats. , 0, .		1