
Kamaljit Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1226027/publications.pdf Version: 2024-02-01

4

#	Article	IF	CITATIONS
1	New type of pore-snap-off and displacement correlations in imbibition. Journal of Colloid and Interface Science, 2022, 609, 384-392.	5.0	18
2	Evaluation of the Dynamic Interfacial Tension between Viscoelastic Surfactant Solutions and Oil Using Porous Micromodels. Langmuir, 2022, 38, 6387-6394.	1.6	4
3	Determination of contact angles for three-phase flow in porous media using an energy balance. Journal of Colloid and Interface Science, 2021, 582, 283-290.	5.0	16
4	Pore-scale characterization of carbon dioxide storage at immiscible and near-miscible conditions in altered-wettability reservoir rocks. International Journal of Greenhouse Gas Control, 2021, 105, 103232.	2.3	25
5	Direct Numerical Simulation of Pore-Scale Trapping Events During Capillary-Dominated Two-Phase Flow in Porous Media. Transport in Porous Media, 2021, 138, 443-458.	1.2	28
6	Dynamics of enhanced gas trapping applied to CO2 storage in the presence of oil using synchrotron X-ray micro tomography. Applied Energy, 2020, 259, 114136.	5.1	46
7	Dynamics of fluid displacement in mixed-wet porous media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200040.	1.0	25
8	In Situ Characterization of Threeâ€Phase Flow in Mixedâ€Wet Porous Media Using Synchrotron Imaging. Water Resources Research, 2020, 56, e2020WR027873.	1.7	17
9	Dynamics of water injection in an oil-wet reservoir rock at subsurface conditions: Invasion patterns and pore-filling events. Physical Review E, 2020, 102, 023110.	0.8	23
10	Verifying Pore Network Models of Imbibition in Rocks Using Timeâ€Resolved Synchrotron Imaging. Water Resources Research, 2020, 56, e2019WR026587.	1.7	27
11	Pore-scale mechanisms of CO2 storage in oilfields. Scientific Reports, 2020, 10, 8534.	1.6	31
12	Three-phase flow displacement dynamics and Haines jumps in a hydrophobic porous medium. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200671.	1.0	10
13	In situ pore-scale analysis of oil recovery during three-phase near-miscible CO2 injection in a water-wet carbonate rock. Advances in Water Resources, 2019, 134, 103432.	1.7	32
14	The Effect of Mixed Wettability on Pore cale Flow Regimes Based on a Flooding Experiment in Ketton Limestone. Geophysical Research Letters, 2019, 46, 3225-3234.	1.5	76
15	The architectural design of smart ventilation and drainage systems in termite nests. Science Advances, 2019, 5, eaat8520.	4.7	35
16	Capillary-Dominated Fluid Displacement in Porous Media. Annual Review of Fluid Mechanics, 2019, 51, 429-449.	10.8	109
17	An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods. Journal of Colloid and Interface Science, 2018, 523, 282-291.	5.0	22

18 Three-Phase Flow Visualization and Characterization for a Mixed-Wet Carbonate Rock. , 2018, , .

Kamaljit Singh

#	Article	IF	CITATIONS
19	In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock. Advances in Water Resources, 2018, 121, 446-455.	1.7	72
20	Partial dissolution of carbonate rock grains during reactive CO2-saturated brine injection under reservoir conditions. Advances in Water Resources, 2018, 122, 27-36.	1.7	34
21	Time-resolved synchrotron X-ray micro-tomography datasets of drainage and imbibition in carbonate rocks. Scientific Data, 2018, 5, 180265.	2.4	23
22	In Situ Pore-Scale Visualization of Immiscible Three-Phase Flow at High Pressure and Temperature. , 2018, , .		2
23	Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media. Journal of Colloid and Interface Science, 2017, 496, 51-59.	5.0	123
24	In situ characterization of mixed-wettability in aÂreservoir rock at subsurface conditions. Scientific Reports, 2017, 7, 10753.	1.6	147
25	Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Scientific Reports, 2017, 7, 5192.	1.6	135
26	The Role of Local Instabilities in Fluid Invasion into Permeable Media. Scientific Reports, 2017, 7, 444.	1.6	65
27	Imaging of oil layers, curvature and contact angle in a mixedâ€wet and a waterâ€wet carbonate rock. Water Resources Research, 2016, 52, 1716-1728.	1.7	124
28	Dynamic imaging of oil shale pyrolysis using synchrotron Xâ€ray microtomography. Geophysical Research Letters, 2016, 43, 6799-6807.	1.5	63
29	From Digital Outcrops to Digital Rocks - Multiscale Characterization of Structural Heterogeniety Within Porous Sandstones. , 2015, , .		1
30	Non-aqueous Phase Liquid Spills in Freezing and Thawing Soils: Critical Analysis of Pore-Scale Processes. Critical Reviews in Environmental Science and Technology, 2013, 43, 551-597.	6.6	11
31	Remobilization of Residual Non-Aqueous Phase Liquid in Porous Media by Freezeâ^'Thaw Cycles. Environmental Science & Technology, 2011, 45, 3473-3478.	4.6	33
32	Mobilization and Rupture of LNAPL Ganglia during Freeze-Thaw: Two-Dimensional Cell Experiments. Environmental Science & Technology, 2008, 42, 5467-5472.	4.6	14