Yuhui Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225912/publications.pdf

Version: 2024-02-01

30	730	17 h-index	27
papers	citations		g-index
30	30	30	601 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Nonlinear optical chromophores containing a novel pyrrole-based bridge: optimization of electro-optic activity and thermal stability by modifying the bridge. Journal of Materials Chemistry C, 2014, 2, 7785-7795.	5.5	64
2	Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. Journal of Materials Chemistry C, 2014, 2, 5124-5132.	5 . 5	62
3	Separable Microneedles for Synergistic Chemo-Photothermal Therapy against Superficial Skin Tumors. ACS Biomaterials Science and Engineering, 2020, 6, 4116-4125.	5.2	50
4	Synthesis of novel nonlinear optical chromophores: achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. Journal of Materials Chemistry C, 2015, 3, 11595-11604.	5.5	47
5	Dynamic Anticounterfeiting Through Novel Photochromic Spiropyran-Based Switch@Ln-MOF Composites. ACS Applied Materials & Interfaces, 2022, 14, 21330-21339.	8.0	47
6	Auxiliary donor for tetrahydroquinoline-containing nonlinear optical chromophores: enhanced electro-optical activity and thermal stability. Journal of Materials Chemistry C, 2015, 3, 9283-9291.	5.5	39
7	Comparison of second-order nonlinear optical chromophores with D–π–A, D–A–π–A and D–D–πarchitectures: diverse NLO effects and interesting optical behavior. RSC Advances, 2014, 4, 52991-52999.	lâ € "A 3.6	38
8	Photo/pH-controlled host–guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the "compound vesicles―for controlled drug delivery. Materials Science and Engineering C, 2018, 89, 237-244.	7.3	33
9	The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Physical Chemistry Chemical Physics, 2015, 17, 5776-5784.	2.8	32
10	Synthesis and characterization of a novel second-order nonlinear optical chromophore based on a new julolidine donor. Physical Chemistry Chemical Physics, 2014, 16, 20209-20215.	2.8	31
11	Fabrication of separable microneedles with phase change coating for NIR-triggered transdermal delivery of metformin on diabetic rats. Biomedical Microdevices, 2020, 22, 12.	2.8	31
12	Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. Journal of Materials Chemistry C, 2015, 3, 5297-5306.	5 . 5	25
13	The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. Journal of Materials Chemistry C, 2015, 3, 3913-3921.	5.5	24
14	Multiple anti-counterfeiting guarantees from simple spiropyran derivatives with solid photochromism and mechanochromism. Cell Reports Physical Science, 2021, 2, 100643.	5 . 6	23
15	Applications of Raman and Surface-Enhanced Raman Scattering Techniques to Humic Substances. Spectroscopy Letters, 1998, 31, 821-848.	1.0	22
16	Novel chromophores with excellent electro-optic activity based on double-donor chromophores by optimizing thiophene bridges. Dyes and Pigments, 2015, 122, 139-146.	3.7	22
17	Enhancement of Solidâ€State Reversible Photochromism by Incorporation of Rigid Steric Hindrance Groups. Advanced Optical Materials, 2021, 9, .	7.3	21
18	The influence on properties with different conjugated direction of phenoxazine and phenothiazine-based chromophores for organic nonlinear optical materials. Dyes and Pigments, 2020, 176, 108219.	3.7	17

#	Article	IF	CITATIONS
19	Solid-state reversible optical switch based on two dendritic molecules with dual sensitivity of mechanochromism and photochromism. Materials Chemistry Frontiers, 2021, 5, 3918-3926.	5.9	16
20	Synthesis and optical nonlinear properties of novel Y-shaped chromophores with excellent electro-optic activity. Journal of Materials Chemistry C, 2015, 3, 11423-11431.	5 . 5	14
21	Acid-, mechano- and photochromic molecular switches based on a spiropyran derivative for rewritable papers. Materials Chemistry Frontiers, 2022, 6, 916-923.	5.9	12
22	A study of two thermostable NLO chromophores with different π-electron bridges using fluorene as the donor. New Journal of Chemistry, 2015, 39, 1038-1044.	2.8	10
23	Structural control of side-chain chromophores to achieve highly efficient electro-optic activity. Physical Chemistry Chemical Physics, 2017, 19, 11502-11509.	2.8	10
24	The design and synthesis of nonlinear optical chromophores containing two short chromophores for an enhanced electro-optic activity. Materials Advances, 2021, 2, 728-735.	5.4	10
25	Dual-stimuli response of spiropyran derivative modified by long-chains: high-contrast photochromism and mechanochromism. Materials Chemistry Frontiers, 2022, 6, 1948-1955.	5.9	9
26	Discovery of $\langle i \rangle N \langle j \rangle$ -(4-(Benzyloxy)-phenyl)-sulfonamide Derivatives as Novel Antagonists of the Human Androgen Receptor Targeting the Activation Function 2. Journal of Medicinal Chemistry, 2022, 65, 2507-2521.	6.4	8
27	The important role of tetraphenylethene on designing bichromophores for organic nonlinear optical materials. Materials Letters, 2021, 291, 129521.	2.6	6
28	Achieving enhanced solid-state photochromism and mechanochromism by introducing a rigid steric hindrance group. Physical Chemistry Chemical Physics, 2021, 23, 17939-17944.	2.8	4
29	Intense mechanoluminescence in an organic donor-acceptor crystal: Grinding induced crystal-to-crystal phase transformation. Optical Materials, 2022, 123, 111886.	3.6	2
30	Selection of affinity ligands for protein purification from proteolytic digests. Biotechnology Letters, 1998, 12, 245-251.	0.5	1