Menna E Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225138/publications.pdf

Version: 2024-02-01

66911 47006 7,478 152 47 78 citations h-index g-index papers 159 159 159 5441 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. Wildlife Research, 2022, 49, 158-168.	1.4	6
2	Rapid gain and loss of predator recognition by an evolutionarily na \tilde{A} ve lizard. Austral Ecology, 2022, 47, 641-652.	1.5	3
3	Cathelicidin-3 Associated With Serum Extracellular Vesicles Enables Early Diagnosis of a Transmissible Cancer. Frontiers in Immunology, 2022, 13, 858423.	4.8	3
4	Darwin, the devil, and the management of transmissible cancers. Conservation Biology, 2021, 35, 748-751.	4.7	13
5	A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201194.	2.6	23
6	The effects of weather variability on patterns of genetic diversity in Tasmanian bettongs. Molecular Ecology, 2021, 30, 1777-1790.	3.9	3
7	Contemporary and historical selection in Tasmanian devils (<i>Sarcophilus harrisii</i>) support novel, polygenic response to transmissible cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210577.	2.6	9
8	Isotopic niche variation in Tasmanian devils Sarcophilus harrisii with progression of devil facial tumor disease. Ecology and Evolution, 2021, 11, 8038-8053.	1.9	4
9	Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics, 2021, 22, 698.	2.8	6
10	Extracellular vesicle proteomes of two transmissible cancers of Tasmanian devils reveal tenascin-C as a serum-based differential diagnostic biomarker. Cellular and Molecular Life Sciences, 2021, 78, 7537-7555.	5.4	6
11	Long-Distance Movements of Feral Cats in Semi-Arid South Australia and Implications for Conservation Management. Animals, 2021, 11, 3125.	2.3	1
12	Research supporting restoration aiming to make aÂfragmented landscape †functional†for native wildlife. Ecological Management and Restoration, 2021, 22, 65-74.	1.5	15
13	A decade of restoring a temperate woodland: Lessons learned and future directions. Ecological Management and Restoration, 2021, 22, 164-174.	1.5	4
14	Changes in spatial organization following an acute epizootic: Tasmanian devils and their transmissible cancer. Global Ecology and Conservation, 2020, 22, e00993.	2.1	10
15	Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (<i>Sarcophilus harrisii</i>) and their transmissible tumour. Molecular Ecology, 2020, 29, 3217-3233.	3.9	9
16	Telomere Length is a Susceptibility Marker for Tasmanian Devil Facial Tumor Disease. EcoHealth, 2020, 17, 280-291.	2.0	4
17	Ageâ€related variation in the trophic characteristics of a marsupial carnivore, the Tasmanian devil Sarcophilus harrisii. Ecology and Evolution, 2020, 10, 7861-7871.	1.9	13
18	Infectious disease and sickness behaviour: tumour progression affects interaction patterns and social network structure in wild Tasmanian devils. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202454.	2.6	16

#	Article	IF	Citations
19	A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science, 2020, 370, .	12.6	24
20	Blood Parasites in Endangered Wildlife-Trypanosomes Discovered during a Survey of Haemoprotozoa from the Tasmanian Devil. Pathogens, 2020, 9, 873.	2.8	8
21	Spontaneous Tumor Regression in Tasmanian Devils Associated with <i>RASL11A</i> Activation. Genetics, 2020, 215, 1143-1152.	2.9	22
22	The ecology and evolution of wildlife cancers: Applications for management and conservation. Evolutionary Applications, 2020, 13, 1719-1732.	3.1	30
23	Short-term pain before long-term gain? Suppression of invasive primary prey temporarily increases predation on native lizards. Biological Invasions, 2020, 22, 2063-2078.	2.4	3
24	Activity and social interactions in a wide-ranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animal-borne video collars. PLoS ONE, 2020, 15, e0230216.	2.5	16
25	Changing bird communities of an agricultural landscape: declines in arboreal foragers, increases in large species. Royal Society Open Science, 2020, 7, 200076.	2.4	15
26	Conservation trade-offs: Island introduction of a threatened predator suppresses invasive mesopredators but eliminates a seabird colony. Biological Conservation, 2020, 248, 108635.	4.1	17
27	A native apex predator limits an invasive mesopredator and protects native prey: Tasmanian devils protecting bandicoots from cats. Ecology Letters, 2020, 23, 711-721.	6.4	38
28	Space use and temporal partitioning of sympatric Tasmanian devils and spottedâ€ŧailed quolls. Austral Ecology, 2020, 45, 355-365.	1.5	18
29	Context and trade-offs characterize real-world threat detection systems: A review and comprehensive framework to improve research practice and resolve the translational crisis. Neuroscience and Biobehavioral Reviews, 2020, 115, 25-33.	6.1	19
30	Management of invasive mesopredators in the Flinders Ranges, South Australia: effectiveness and implications. Wildlife Research, 2020, 47, 720.	1.4	18
31	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii ⟨ li >) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.</i>	2.3	18
32	Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils. PLoS Biology, 2020, 18, e3000926.	5.6	23
33	Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Molecular Biology and Evolution, 2019, 36, 2906-2921.	8.9	84
34	Stateâ€space modeling reveals habitat perception of a small terrestrial mammal in a fragmented landscape. Ecology and Evolution, 2019, 9, 9804-9814.	1.9	5
35	Temporal partitioning of activity: rising and falling topâ€predator abundance triggers communityâ€wide shifts in diel activity. Ecography, 2019, 42, 2157-2168.	4.5	44
36	Trophic rewilding establishes a landscape of fear: Tasmanian devil introduction increases riskâ€sensitive foraging in a key prey species. Ecography, 2019, 42, 2053-2059.	4.5	25

#	Article	IF	CITATIONS
37	Individual and temporal variation in pathogen load predicts longâ€ŧerm impacts of an emerging infectious disease. Ecology, 2019, 100, e02613.	3.2	33
38	An Australian perspective on rewilding. Conservation Biology, 2019, 33, 812-820.	4.7	20
39	Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary Applications, 2019, 12, 1772-1780.	3.1	37
40	Chronic stress in superb fairyâ€wrens occupying remnant woodlands: Are noisy miners to blame?. Austral Ecology, 2019, 44, 1139-1149.	1.5	9
41	Rate of intersexual interactions affects injury likelihood in Tasmanian devil contact networks. Behavioral Ecology, 2019, 30, 1087-1095.	2.2	25
42	Harnessing the power of ecological interactions to reduce the impacts of feral cats. Biodiversity, 2019, 20, 43-47.	1.1	9
43	Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. Conservation Genetics, 2019, 20, 81-87.	1.5	41
44	Home range size scales to habitat amount and increasing fragmentation in a mobile woodland specialist. Ecology and Evolution, 2019, 9, 14005-14014.	1.9	18
45	Emergence, transmission and evolution of an uncommon enemy: Tasmanian devil facial tumour disease., 2019,, 321-341.		4
46	Transcriptomics of Tasmanian Devil (Sarcophilus Harrisii) Ear Tissue Reveals Homogeneous Gene Expression Patterns across a Heterogeneous Landscape. Genes, 2019, 10, 801.	2.4	6
47	Ancient <scp>DNA</scp> tracks the mainland extinction and island survival of the Tasmanian devil. Journal of Biogeography, 2018, 45, 963-976.	3.0	22
48	Density trends and demographic signals uncover the longâ€ŧerm impact of transmissible cancer in Tasmanian devils. Journal of Applied Ecology, 2018, 55, 1368-1379.	4.0	128
49	Making the connection: expanding the role of restoration genetics in restoring and evaluating connectivity. Restoration Ecology, 2018, 26, 411-418.	2.9	22
50	Biologically meaningful scents: a framework for understanding predator–prey research across disciplines. Biological Reviews, 2018, 93, 98-114.	10.4	95
51	Tasman-PCR: a genetic diagnostic assay for Tasmanian devil facial tumour diseases. Royal Society Open Science, 2018, 5, 180870.	2.4	17
52	Top carnivore decline has cascading effects on scavengers and carrion persistence. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	2.6	62
53	Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182239.	2.6	31
54	Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landscape Ecology, 2018, 33, 1837-1849.	4.2	42

#	Article	IF	CITATIONS
55	Two Decades of the Impact of Tasmanian Devil Facial Tumor Disease. Integrative and Comparative Biology, 2018, 58, 1043-1054.	2.0	10
56	An exotic woody weed in a pastoral landscape provides habitat for many native species, but has no apparent threatened species conservation significance. Ecological Management and Restoration, 2018, 19, 212-221.	1.5	9
57	Hope and caution: rewilding to mitigate the impacts of biological invasions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180127.	4.0	17
58	The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biology and Evolution, 2018, 10, 3012-3025.	2.5	30
59	Largeâ€effect loci affect survival in Tasmanian devils (<i>Sarcophilus harrisii</i>) infected with a transmissible cancer. Molecular Ecology, 2018, 27, 4189-4199.	3.9	45
60	Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conservation Biology, 2018, 24, 157.	1.0	78
61	The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathogens, 2018, 14, e1007098.	4.7	18
62	Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conservation Genetics, 2017, 18, 977-982.	1.5	50
63	Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Scientific Reports, 2017, 7, 423.	3.3	56
64	Infection of the fittest: devil facial tumour disease has greatest effect on individuals with highest reproductive output. Ecology Letters, 2017, 20, 770-778.	6.4	50
65	Sarcophilus harrisii (Dasyuromorphia: Dasyuridae). Mammalian Species, 2017, 49, 1-17.	0.7	19
66	Landscape genetics of the Tasmanian devil: implications for spread of an infectious cancer. Conservation Genetics, 2017, 18, 1287-1297.	1.5	15
67	Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports, 2017, 7, 11624.	3.3	43
68	Untangling the model muddle: Empirical tumour growth in Tasmanian devil facial tumour disease. Scientific Reports, 2017, 7, 6217.	3.3	9
69	Dietary partitioning of Australia's two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range. PLoS ONE, 2017, 12, e0188529.	2.5	33
70	A Nose for Death: Integrating Trophic and Informational Networks for Conservation and Management. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	23
71	Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease. PLoS ONE, 2016, 11, e0147875.	2.5	17
72	Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biology Letters, 2016, 12, 20160553.	2.3	87

#	Article	lF	CITATIONS
73	Immunoglubolin dynamics and cancer prevalence in Tasmanian devils (Sarcophilus harrisii). Scientific Reports, 2016, 6, 25093.	3.3	18
74	Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated: A response to Baker et al. 2016 and Fancourt & Mooney 2016. Biological Conservation, 2016, 196, 20-21.	4.1	1
75	Hematologic and serum biochemical changes associated with Devil Facial Tumor Disease in Tasmanian Devils. Veterinary Clinical Pathology, 2016, 45, 417-429.	0.7	8
76	Discovery of Biomarkers for Tasmanian Devil Cancer (DFTD) by Metabolic Profiling of Serum. Journal of Proteome Research, 2016, 15, 3827-3840.	3.7	13
77	Sympatric predator odour reveals a competitive relationship in size-structured mammalian carnivores. Behavioral Ecology and Sociobiology, 2016, 70, 1831-1841.	1.4	10
78	Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications, 2016, 7, 12684.	12.8	162
79	Applying an animalâ€centric approach to improve ecological restoration. Restoration Ecology, 2016, 24, 836-842.	2.9	48
80	Extraterritorial hunting expeditions to intense fire scars by feral cats. Scientific Reports, 2016, 6, 22559.	3.3	88
81	Diseaseâ€induced decline of an apex predator drives invasive dominated states and threatens biodiversity. Ecology, 2016, 97, 394-405.	3.2	38
82	Amplified predation after fire suppresses rodent populations in Australia's tropical savannas. Wildlife Research, 2015, 42, 705.	1.4	152
83	Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics, 2015, 16, 791.	2.8	32
84	Hematologic and serum biochemical reference intervals for wild Tasmanian devils (<i>Sarcophilus) Tj ETQq0 0 0</i>	rgBT /Over	lock 10 Tf 50
85	Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video. PLoS ONE, 2015, 10, e0133915.	2.5	172
86	Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conservation Genetics, 2015, 16, 1465-1473.	1.5	45
87	Emerging infectious diseases of wildlife: a critical perspective. Trends in Parasitology, 2015, 31, 149-159.	3.3	232
88	Relaxation of risk-sensitive behaviour of prey following disease-induced decline of an apex predator, the Tasmanian devil. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150124.	2.6	22
89	Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biological Conservation, 2015, 191, 428-435.	4.1	43
90	Density and home range of feral cats in north-western Australia. Wildlife Research, 2015, 42, 223.	1.4	65

#	Article	IF	Citations
91	Transmissible cancer in Tasmanian devils: localized lineage replacement and host population response. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151468.	2.6	48
92	Devil Declines and Catastrophic Cascades: Is Mesopredator Release of Feral Cats Inhibiting Recovery of the Eastern Quoll?. PLoS ONE, 2015, 10, e0119303.	2.5	52
93	Testing the Role of Climate Change in Species Decline: Is the Eastern Quoll a Victim of a Change in the Weather?. PLoS ONE, 2015, 10, e0129420.	2.5	26
94	Trophic Cascades Following the Diseaseâ€Induced Decline of an Apex Predator, the Tasmanian Devil. Conservation Biology, 2014, 28, 63-75.	4.7	90
95	Anthropogenic selection enhances cancer evolution in T asmanian devil tumours. Evolutionary Applications, 2014, 7, 260-265.	3.1	22
96	Boldness towards novelty and translocation success in captiveâ€raised, orphaned Tasmanian devils. Zoo Biology, 2014, 33, 36-48.	1.2	39
97	Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biology Letters, 2014, 10, 20140619.	2.3	59
98	Beyond the disease: Is Toxoplasma gondii infection causing population declines in the eastern quoll (Dasyurus viverrinus)?. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 102-112.	1.5	24
99	Landscape Management of Fire and Grazing Regimes Alters the Fine-Scale Habitat Utilisation by Feral Cats. PLoS ONE, 2014, 9, e109097.	2.5	189
100	Disease induced changes in gene flow patterns among Tasmanian devil populations. Biological Conservation, 2013, 165, 69-78.	4.1	15
101	Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 110-118.	1.5	62
102	Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5103-5108.	7.1	191
103	Sperm competition drives the evolution of suicidal reproduction in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17910-17914.	7.1	112
104	Biting injuries and transmission of <scp>T</scp> asmanian devil facial tumour disease. Journal of Animal Ecology, 2013, 82, 182-190.	2.8	122
105	Protecting islands from pest invasion: Response to Greenslade et al Biological Conservation, 2013, 157, 435-436.	4.1	2
106	Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genomics, 2012, 13, 87.	2.8	54
107	Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics, 2012, 64, 525-533.	2.4	59
108	Reduced Effect of Tasmanian Devil Facial Tumor Disease at the Disease Front. Conservation Biology, 2012, 26, 124-134.	4.7	69

#	Article	IF	Citations
109	Simulating devil facial tumour disease outbreaks across empirically derived contact networks. Journal of Applied Ecology, 2012, 49, 447-456.	4.0	39
110	New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease. PLoS ONE, 2012, 7, e36955.	2.5	30
111	The Devil is in the detail: conservation biology, animal philosophies and the role of animal ethics committees. , 2012, , 79-88.		2
112	Characteristics of mammal communities in Tasmanian forests: exploring the influence of forest type and disturbance history. Wildlife Research, 2011, 38, 13.	1.4	12
113	A new PCR assay for reliable molecular sexing of endangered Tasmanian devils (Sarcophilus harrisii) from non-invasive genetic samples. Conservation Genetics Resources, 2011, 3, 279-281.	0.8	5
114	Genetic diversity and population structure of the endangered marsupial <i>Sarcophilus harrisii</i> (Tasmanian devil). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12348-12353.	7.1	189
115	Evaluation of Selective Culling of Infected Individuals to Control Tasmanian Devil Facial Tumor Disease. Conservation Biology, 2010, 24, 841-851.	4.7	68
116	MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2001-2006.	2.6	125
117	Active adaptive conservation of threatened species in the face of uncertainty. Ecological Applications, 2010, 20, 1476-1489.	3.8	85
118	Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biological Conservation, 2010, 143, 1068-1078.	4.1	59
119	Sins of omission and sins of commission: St Thomas Aquinas and the devil. Australian Zoologist, 2010, 35, 307-314.	1.1	5
120	Demography, disease and the devil: lifeâ€history changes in a diseaseâ€affected population of Tasmanian devils (<i>Sarcophilus harrisii</i>). Journal of Animal Ecology, 2009, 78, 427-436.	2.8	110
121	Contact networks in a wild Tasmanian devil (<i>Sarcophilus harrisii</i>) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecology Letters, 2009, 12, 1147-1157.	6.4	280
122	Transmission dynamics of Tasmanian devil facial tumor disease may lead to diseaseâ€induced extinction. Ecology, 2009, 90, 3379-3392.	3.2	210
123	Seasonal, demographic and densityâ€related patterns of contact between Tasmanian devils (<i>Sarcophilus harrisii</i>): Implications for transmission of devil facial tumour disease. Austral Ecology, 2008, 33, 614-622.	1.5	81
124	Life-history change in disease-ravaged Tasmanian devil populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10023-10027.	7.1	232
125	The impact of disease on the survival and population growth rate of the Tasmanian devil. Journal of Animal Ecology, 2007, 76, 926-936.	2.8	143
126	Distribution and Impacts of Tasmanian Devil Facial Tumor Disease. EcoHealth, 2007, 4, 318-325.	2.0	163

#	Article	IF	Citations
127	Conservation Management of Tasmanian Devils in the Context of an Emerging, Extinction-threatening Disease: Devil Facial Tumor Disease. EcoHealth, 2007, 4, 326-337.	2.0	113
128	To Lose Both Would Look Like Carelessness: Tasmanian Devil Facial Tumour Disease. PLoS Biology, 2006, 4, e342.	5.6	73
129	Conservation Biology 5: Carnivore Conservation. Austral Ecology, 2005, 30, 485-486.	1.5	0
130	Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Molecular Ecology, 2004, 13, 2197-2209.	3.9	162
131	Historical Ecology for Conservation Managers. Conservation Biology, 2004, 18, 281-282.	4.7	1
132	Is anti-predator behaviour in Tasmanian eastern quolls (Dasyurus viverrinus) effective against introduced predators?. Animal Conservation, 2004, 7, 155-160.	2.9	50
133	Microsatellites for the Tasmanian devil (Sarcophilus laniarius). Molecular Ecology Notes, 2003, 3, 277-279.	1.7	36
134	Predators with Pouches., 2003,,.		99
135	COEXISTENCE OF TEMPORALLY PARTITIONED SPINY MICE: ROLES OF HABITAT STRUCTURE AND FORAGING BEHAVIOR. Ecology, 2001, 82, 2164-2176.	3.2	97
136	Dasyurus viverrinus. Mammalian Species, 2001, 677, 1-9.	0.7	22
137	Dasyurus maculatus. Mammalian Species, 2001, 676, 1-9.	0.7	35
138	Coexistence of Temporally Partitioned Spiny Mice: Roles of Habitat Structure and Foraging Behavior. Ecology, 2001, 82, 2164.	3.2	4
139	Title is missing!. Journal of Chemical Ecology, 2000, 26, 455-469.	1.8	51
140	NICHE DIFFERENTIATION AMONG SYMPATRIC AUSTRALIAN DASYURID CARNIVORES. Journal of Mammalogy, 2000, 81, 434-447.	1.3	85
141	Road upgrade, road mortality and remedial measures: impacts on a population of eastern quolls and Tasmanian devils. Wildlife Research, 2000, 27, 289.	1.4	157
142	The function of vigilance in sympatric marsupial carnivores: the eastern quoll and the Tasmanian devil. Animal Behaviour, 1998, 56, 1279-1284.	1.9	43
143	Reconstruction of the predatory behaviour of the extinct marsupial thylacine (Thylacinus) Tj ETQq $1\ 1\ 0.784314$	rgBT/Over	lock 10 Tf 50
144	Diet overlap and relative abundance of sympatric dasyurid carnivores: a hypothesis of competition. Journal of Animal Ecology, 1998, 67, 410-421.	2.8	118

#	Article	IF	CITATIONS
145	Reconstruction of the predatory behaviour of the extinct marsupial thylacine (Thylacinus) Tj ETQq1 1 0.784314	rgBT_/Ove	rlock 10 Tf 50
146	CHARACTER DISPLACEMENT IN AUSTRALIAN DASYURID CARNIVORES: SIZE RELATIONSHIPS AND PREY SIZE PATTERNS. Ecology, 1997, 78, 2569-2587.	3.2	86
147	Body Temperatures and Activity Patterns of Tasmanian Devils (Sarcophilus harrisii) and Eastern Quolls (Dasyurus viverrinus) through a Subalpine Winter. Physiological Zoology, 1997, 70, 53-60.	1.5	27
148	Structure of shells from eggs of the Australian lizard <i>Amphibolurus barbatus</i> Lournal of Zoology, 1991, 69, 303-310.	1.0	7
149	Drift Disseminules on Cays of the Swain Reefs, Great Barrier Reef, Australia. Journal of Biogeography, 1990, 17, 5.	3.0	21
150	Calcium mobilization, water balance, and growth in embryos of the agamid lizardAmphibolurus barbatus. The Journal of Experimental Zoology, 1985, 235, 349-357.	1.4	50
151	Assessing the value of restoration plantings for wildlife in a temperate agricultural landscape. Restoration Ecology, 0, , e13470.	2.9	5
152	Dasyurus maculatus. Mammalian Species, 0, , .	0.7	1