
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225138/publications.pdf Version: 2024-02-01

MENNA FLONES

#	Article	IF	CITATIONS
1	Contact networks in a wild Tasmanian devil (<i>Sarcophilus harrisii</i>) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecology Letters, 2009, 12, 1147-1157.	6.4	280
2	Life-history change in disease-ravaged Tasmanian devil populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10023-10027.	7.1	232
3	Emerging infectious diseases of wildlife: a critical perspective. Trends in Parasitology, 2015, 31, 149-159.	3.3	232
4	Transmission dynamics of Tasmanian devil facial tumor disease may lead to diseaseâ€induced extinction. Ecology, 2009, 90, 3379-3392.	3.2	210
5	Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5103-5108.	7.1	191
6	Genetic diversity and population structure of the endangered marsupial <i>Sarcophilus harrisii</i> (Tasmanian devil). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12348-12353.	7.1	189
7	Landscape Management of Fire and Grazing Regimes Alters the Fine-Scale Habitat Utilisation by Feral Cats. PLoS ONE, 2014, 9, e109097.	2.5	189
8	Feral Cats Are Better Killers in Open Habitats, Revealed by Animal-Borne Video. PLoS ONE, 2015, 10, e0133915.	2.5	172
9	Distribution and Impacts of Tasmanian Devil Facial Tumor Disease. EcoHealth, 2007, 4, 318-325.	2.0	163
10	Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Molecular Ecology, 2004, 13, 2197-2209.	3.9	162
11	Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications, 2016, 7, 12684.	12.8	162
12	Road upgrade, road mortality and remedial measures: impacts on a population of eastern quolls and Tasmanian devils. Wildlife Research, 2000, 27, 289.	1.4	157
13	Amplified predation after fire suppresses rodent populations in Australia's tropical savannas. Wildlife Research, 2015, 42, 705.	1.4	152
14	The impact of disease on the survival and population growth rate of the Tasmanian devil. Journal of Animal Ecology, 2007, 76, 926-936.	2.8	143
15	Density trends and demographic signals uncover the longâ€ŧerm impact of transmissible cancer in Tasmanian devils. Journal of Applied Ecology, 2018, 55, 1368-1379.	4.0	128
16	MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2001-2006.	2.6	125
17	Biting injuries and transmission of <scp>T</scp> asmanian devil facial tumour disease. Journal of Animal Ecology, 2013, 82, 182-190.	2.8	122
18	Diet overlap and relative abundance of sympatric dasyurid carnivores: a hypothesis of competition. Journal of Animal Ecology, 1998, 67, 410-421.	2.8	118

#	Article	IF	CITATIONS
19	Conservation Management of Tasmanian Devils in the Context of an Emerging, Extinction-threatening Disease: Devil Facial Tumor Disease. EcoHealth, 2007, 4, 326-337.	2.0	113
20	Sperm competition drives the evolution of suicidal reproduction in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17910-17914.	7.1	112
21	Demography, disease and the devil: lifeâ€history changes in a diseaseâ€affected population of Tasmanian devils (<i>Sarcophilus harrisii</i>). Journal of Animal Ecology, 2009, 78, 427-436.	2.8	110
22	Predators with Pouches. , 2003, , .		99
23	COEXISTENCE OF TEMPORALLY PARTITIONED SPINY MICE: ROLES OF HABITAT STRUCTURE AND FORAGING BEHAVIOR. Ecology, 2001, 82, 2164-2176.	3.2	97
24	Biologically meaningful scents: a framework for understanding predator–prey research across disciplines. Biological Reviews, 2018, 93, 98-114.	10.4	95
25	Trophic Cascades Following the Diseaseâ€Induced Decline of an Apex Predator, the Tasmanian Devil. Conservation Biology, 2014, 28, 63-75.	4.7	90
26	Extraterritorial hunting expeditions to intense fire scars by feral cats. Scientific Reports, 2016, 6, 22559.	3.3	88
27	Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biology Letters, 2016, 12, 20160553.	2.3	87
28	CHARACTER DISPLACEMENT IN AUSTRALIAN DASYURID CARNIVORES: SIZE RELATIONSHIPS AND PREY SIZE PATTERNS. Ecology, 1997, 78, 2569-2587.	3.2	86
29	NICHE DIFFERENTIATION AMONG SYMPATRIC AUSTRALIAN DASYURID CARNIVORES. Journal of Mammalogy, 2000, 81, 434-447.	1.3	85
30	Active adaptive conservation of threatened species in the face of uncertainty. Ecological Applications, 2010, 20, 1476-1489.	3.8	85
31	Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Molecular Biology and Evolution, 2019, 36, 2906-2921.	8.9	84
32	Seasonal, demographic and densityâ€related patterns of contact between Tasmanian devils (<i>Sarcophilus harrisii</i>): Implications for transmission of devil facial tumour disease. Austral Ecology, 2008, 33, 614-622.	1.5	81
33	Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conservation Biology, 2018, 24, 157.	1.0	78
34	Reconstruction of the predatory behaviour of the extinct marsupial thylacine (Thylacinus) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf <u>50</u> 142 Td

35	To Lose Both Would Look Like Carelessness: Tasmanian Devil Facial Tumour Disease. PLoS Biology, 2006, 4, e342.	5.6	73
36	Reduced Effect of Tasmanian Devil Facial Tumor Disease at the Disease Front. Conservation Biology, 2012, 26, 124-134.	4.7	69

#	Article	IF	CITATIONS
37	Evaluation of Selective Culling of Infected Individuals to Control Tasmanian Devil Facial Tumor Disease. Conservation Biology, 2010, 24, 841-851.	4.7	68
38	Density and home range of feral cats in north-western Australia. Wildlife Research, 2015, 42, 223.	1.4	65
39	Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 110-118.	1.5	62
40	Top carnivore decline has cascading effects on scavengers and carrion persistence. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	2.6	62
41	Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biological Conservation, 2010, 143, 1068-1078.	4.1	59
42	Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics, 2012, 64, 525-533.	2.4	59
43	Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biology Letters, 2014, 10, 20140619.	2.3	59
44	Variants in the host genome may inhibit tumour growth in devil facial tumours: evidence from genome-wide association. Scientific Reports, 2017, 7, 423.	3.3	56
45	Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genomics, 2012, 13, 87.	2.8	54
46	Devil Declines and Catastrophic Cascades: Is Mesopredator Release of Feral Cats Inhibiting Recovery of the Eastern Quoll?. PLoS ONE, 2015, 10, e0119303.	2.5	52
47	Title is missing!. Journal of Chemical Ecology, 2000, 26, 455-469.	1.8	51
48	Calcium mobilization, water balance, and growth in embryos of the agamid lizardAmphibolurus barbatus. The Journal of Experimental Zoology, 1985, 235, 349-357.	1.4	50
49	ls anti-predator behaviour in Tasmanian eastern quolls (Dasyurus viverrinus) effective against introduced predators?. Animal Conservation, 2004, 7, 155-160.	2.9	50
50	Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conservation Genetics, 2017, 18, 977-982.	1.5	50
51	Infection of the fittest: devil facial tumour disease has greatest effect on individuals with highest reproductive output. Ecology Letters, 2017, 20, 770-778.	6.4	50
52	Transmissible cancer in Tasmanian devils: localized lineage replacement and host population response. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151468.	2.6	48
53	Applying an animal entric approach to improve ecological restoration. Restoration Ecology, 2016, 24, 836-842.	2.9	48
54	Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conservation Genetics, 2015, 16, 1465-1473.	1.5	45

#	Article	IF	CITATIONS
55	Largeâ€effect loci affect survival in Tasmanian devils (<i>Sarcophilus harrisii</i>) infected with a transmissible cancer. Molecular Ecology, 2018, 27, 4189-4199.	3.9	45
56	Temporal partitioning of activity: rising and falling topâ€predator abundance triggers communityâ€wide shifts in diel activity. Ecography, 2019, 42, 2157-2168.	4.5	44
57	The function of vigilance in sympatric marsupial carnivores: the eastern quoll and the Tasmanian devil. Animal Behaviour, 1998, 56, 1279-1284.	1.9	43
58	Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated. Biological Conservation, 2015, 191, 428-435.	4.1	43
59	Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Scientific Reports, 2017, 7, 11624.	3.3	43
60	Habitat amount and quality, not patch size, determine persistence of a woodland-dependent mammal in an agricultural landscape. Landscape Ecology, 2018, 33, 1837-1849.	4.2	42
61	Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. Conservation Genetics, 2019, 20, 81-87.	1.5	41
62	Simulating devil facial tumour disease outbreaks across empirically derived contact networks. Journal of Applied Ecology, 2012, 49, 447-456.	4.0	39
63	Boldness towards novelty and translocation success in captiveâ€raised, orphaned Tasmanian devils. Zoo Biology, 2014, 33, 36-48.	1.2	39
64	Diseaseâ€induced decline of an apex predator drives invasive dominated states and threatens biodiversity. Ecology, 2016, 97, 394-405.	3.2	38
65	A native apex predator limits an invasive mesopredator and protects native prey: Tasmanian devils protecting bandicoots from cats. Ecology Letters, 2020, 23, 711-721.	6.4	38
66	Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary Applications, 2019, 12, 1772-1780.	3.1	37
67	Microsatellites for the Tasmanian devil (Sarcophilus Ianiarius). Molecular Ecology Notes, 2003, 3, 277-279.	1.7	36
68	Dasyurus maculatus. Mammalian Species, 2001, 676, 1-9.	0.7	35
69	Individual and temporal variation in pathogen load predicts longâ€ŧerm impacts of an emerging infectious disease. Ecology, 2019, 100, e02613.	3.2	33
70	Dietary partitioning of Australia's two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range. PLoS ONE, 2017, 12, e0188529.	2.5	33
71	Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics, 2015, 16, 791.	2.8	32
72	Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20182239.	2.6	31

#	Article	IF	CITATIONS
73	The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biology and Evolution, 2018, 10, 3012-3025.	2.5	30
74	The ecology and evolution of wildlife cancers: Applications for management and conservation. Evolutionary Applications, 2020, 13, 1719-1732.	3.1	30
75	New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease. PLoS ONE, 2012, 7, e36955.	2.5	30
76	Body Temperatures and Activity Patterns of Tasmanian Devils (Sarcophilus harrisii) and Eastern Quolls (Dasyurus viverrinus) through a Subalpine Winter. Physiological Zoology, 1997, 70, 53-60.	1.5	27
77	Testing the Role of Climate Change in Species Decline: Is the Eastern Quoll a Victim of a Change in the Weather?. PLoS ONE, 2015, 10, e0129420.	2.5	26
78	Trophic rewilding establishes a landscape of fear: Tasmanian devil introduction increases riskâ€sensitive foraging in a key prey species. Ecography, 2019, 42, 2053-2059.	4.5	25
79	Rate of intersexual interactions affects injury likelihood in Tasmanian devil contact networks. Behavioral Ecology, 2019, 30, 1087-1095.	2.2	25
80	Beyond the disease: Is Toxoplasma gondii infection causing population declines in the eastern quoll (Dasyurus viverrinus)?. International Journal for Parasitology: Parasites and Wildlife, 2014, 3, 102-112.	1.5	24
81	A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science, 2020, 370, .	12.6	24
82	A Nose for Death: Integrating Trophic and Informational Networks for Conservation and Management. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	23
83	A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201194.	2.6	23
84	Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils. PLoS Biology, 2020, 18, e3000926.	5.6	23
85	Dasyurus viverrinus. Mammalian Species, 2001, 677, 1-9.	0.7	22
86	Anthropogenic selection enhances cancer evolution in T asmanian devil tumours. Evolutionary Applications, 2014, 7, 260-265.	3.1	22
87	Relaxation of risk-sensitive behaviour of prey following disease-induced decline of an apex predator, the Tasmanian devil. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150124.	2.6	22
88	Ancient <scp>DNA</scp> tracks the mainland extinction and island survival of the Tasmanian devil. Journal of Biogeography, 2018, 45, 963-976.	3.0	22
89	Making the connection: expanding the role of restoration genetics in restoring and evaluating connectivity. Restoration Ecology, 2018, 26, 411-418.	2.9	22
90	Spontaneous Tumor Regression in Tasmanian Devils Associated with <i>RASL11A</i> Activation. Genetics, 2020, 215, 1143-1152.	2.9	22

#	Article	IF	CITATIONS
91	Drift Disseminules on Cays of the Swain Reefs, Great Barrier Reef, Australia. Journal of Biogeography, 1990, 17, 5.	3.0	21
92	An Australian perspective on rewilding. Conservation Biology, 2019, 33, 812-820.	4.7	20
93	Sarcophilus harrisii (Dasyuromorphia: Dasyuridae). Mammalian Species, 2017, 49, 1-17.	0.7	19
94	Context and trade-offs characterize real-world threat detection systems: A review and comprehensive framework to improve research practice and resolve the translational crisis. Neuroscience and Biobehavioral Reviews, 2020, 115, 25-33.	6.1	19
95	Immunoglubolin dynamics and cancer prevalence in Tasmanian devils (Sarcophilus harrisii). Scientific Reports, 2016, 6, 25093.	3.3	18
96	The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathogens, 2018, 14, e1007098.	4.7	18
97	Home range size scales to habitat amount and increasing fragmentation in a mobile woodland specialist. Ecology and Evolution, 2019, 9, 14005-14014.	1.9	18
98	Space use and temporal partitioning of sympatric Tasmanian devils and spottedâ€ŧailed quolls. Austral Ecology, 2020, 45, 355-365.	1.5	18
99	Management of invasive mesopredators in the Flinders Ranges, South Australia: effectiveness and implications. Wildlife Research, 2020, 47, 720.	1.4	18
100	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii</i>) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.	2.3	18
101	Detecting Selection on Temporal and Spatial Scales: A Genomic Time-Series Assessment of Selective Responses to Devil Facial Tumor Disease. PLoS ONE, 2016, 11, e0147875.	2.5	17
102	Tasman-PCR: a genetic diagnostic assay for Tasmanian devil facial tumour diseases. Royal Society Open Science, 2018, 5, 180870.	2.4	17
103	Hope and caution: rewilding to mitigate the impacts of biological invasions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180127.	4.0	17
104	Conservation trade-offs: Island introduction of a threatened predator suppresses invasive mesopredators but eliminates a seabird colony. Biological Conservation, 2020, 248, 108635.	4.1	17
105	Infectious disease and sickness behaviour: tumour progression affects interaction patterns and social network structure in wild Tasmanian devils. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202454.	2.6	16
106	Activity and social interactions in a wide-ranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animal-borne video collars. PLoS ONE, 2020, 15, e0230216.	2.5	16
107	Disease induced changes in gene flow patterns among Tasmanian devil populations. Biological Conservation, 2013, 165, 69-78.	4.1	15
108	Landscape genetics of the Tasmanian devil: implications for spread of an infectious cancer. Conservation Genetics, 2017, 18, 1287-1297.	1.5	15

#	Article	IF	CITATIONS
109	Changing bird communities of an agricultural landscape: declines in arboreal foragers, increases in large species. Royal Society Open Science, 2020, 7, 200076.	2.4	15
110	Research supporting restoration aiming to make aÂfragmented landscape â€~functional' for native wildlife. Ecological Management and Restoration, 2021, 22, 65-74.	1.5	15
111	Hematologic and serum biochemical reference intervals for wild Tasmanian devils (<i>Sarcophilus) Tj ETQq1 1</i>	0.784314 r 0.7	gBT_/Overloci
112	Discovery of Biomarkers for Tasmanian Devil Cancer (DFTD) by Metabolic Profiling of Serum. Journal of Proteome Research, 2016, 15, 3827-3840.	3.7	13
113	Ageâ€related variation in the trophic characteristics of a marsupial carnivore, the Tasmanian devil Sarcophilus harrisii. Ecology and Evolution, 2020, 10, 7861-7871.	1.9	13
114	Darwin, the devil, and the management of transmissible cancers. Conservation Biology, 2021, 35, 748-751.	4.7	13
115	Characteristics of mammal communities in Tasmanian forests: exploring the influence of forest type and disturbance history. Wildlife Research, 2011, 38, 13.	1.4	12
116	Sympatric predator odour reveals a competitive relationship in size-structured mammalian carnivores. Behavioral Ecology and Sociobiology, 2016, 70, 1831-1841.	1.4	10
117	Two Decades of the Impact of Tasmanian Devil Facial Tumor Disease. Integrative and Comparative Biology, 2018, 58, 1043-1054.	2.0	10
118	Changes in spatial organization following an acute epizootic: Tasmanian devils and their transmissible cancer. Global Ecology and Conservation, 2020, 22, e00993.	2.1	10
119	Untangling the model muddle: Empirical tumour growth in Tasmanian devil facial tumour disease. Scientific Reports, 2017, 7, 6217.	3.3	9
120	An exotic woody weed in a pastoral landscape provides habitat for many native species, but has no apparent threatened species conservation significance. Ecological Management and Restoration, 2018, 19, 212-221.	1.5	9
121	Chronic stress in superb fairyâ€wrens occupying remnant woodlands: Are noisy miners to blame?. Austral Ecology, 2019, 44, 1139-1149.	1.5	9
122	Harnessing the power of ecological interactions to reduce the impacts of feral cats. Biodiversity, 2019, 20, 43-47.	1.1	9
123	Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (<i>Sarcophilus harrisii</i>) and their transmissible tumour. Molecular Ecology, 2020, 29, 3217-3233.	3.9	9
124	Contemporary and historical selection in Tasmanian devils (<i>Sarcophilus harrisii</i>) support novel, polygenic response to transmissible cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210577.	2.6	9
125	Hematologic and serum biochemical changes associated with Devil Facial Tumor Disease in Tasmanian Devils. Veterinary Clinical Pathology, 2016, 45, 417-429.	0.7	8
126	Blood Parasites in Endangered Wildlife-Trypanosomes Discovered during a Survey of Haemoprotozoa from the Tasmanian Devil. Pathogens, 2020, 9, 873.	2.8	8

#	Article	IF	CITATIONS
127	Structure of shells from eggs of the Australian lizard <i>Amphibolurus barbatus</i> . Canadian Journal of Zoology, 1991, 69, 303-310.	1.0	7
128	Transcriptomics of Tasmanian Devil (Sarcophilus Harrisii) Ear Tissue Reveals Homogeneous Gene Expression Patterns across a Heterogeneous Landscape. Genes, 2019, 10, 801.	2.4	6
129	Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics, 2021, 22, 698.	2.8	6
130	Extracellular vesicle proteomes of two transmissible cancers of Tasmanian devils reveal tenascin-C as a serum-based differential diagnostic biomarker. Cellular and Molecular Life Sciences, 2021, 78, 7537-7555.	5.4	6
131	Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore. Wildlife Research, 2022, 49, 158-168.	1.4	6
132	A new PCR assay for reliable molecular sexing of endangered Tasmanian devils (Sarcophilus harrisii) from non-invasive genetic samples. Conservation Genetics Resources, 2011, 3, 279-281.	0.8	5
133	Stateâ€space modeling reveals habitat perception of a small terrestrial mammal in a fragmented landscape. Ecology and Evolution, 2019, 9, 9804-9814.	1.9	5
134	Assessing the value of restoration plantings for wildlife in a temperate agricultural landscape. Restoration Ecology, 0, , e13470.	2.9	5
135	Sins of omission and sins of commission: St Thomas Aquinas and the devil. Australian Zoologist, 2010, 35, 307-314.	1.1	5
136	Emergence, transmission and evolution of an uncommon enemy: Tasmanian devil facial tumour disease. , 2019, , 321-341.		4
137	Telomere Length is a Susceptibility Marker for Tasmanian Devil Facial Tumor Disease. EcoHealth, 2020, 17, 280-291.	2.0	4
138	Isotopic niche variation in Tasmanian devils Sarcophilus harrisii with progression of devil facial tumor disease. Ecology and Evolution, 2021, 11, 8038-8053.	1.9	4
139	Coexistence of Temporally Partitioned Spiny Mice: Roles of Habitat Structure and Foraging Behavior. Ecology, 2001, 82, 2164.	3.2	4
140	A decade of restoring a temperate woodland: Lessons learned and future directions. Ecological Management and Restoration, 2021, 22, 164-174.	1.5	4
141	Short-term pain before long-term gain? Suppression of invasive primary prey temporarily increases predation on native lizards. Biological Invasions, 2020, 22, 2063-2078.	2.4	3
142	The effects of weather variability on patterns of genetic diversity in Tasmanian bettongs. Molecular Ecology, 2021, 30, 1777-1790.	3.9	3
143	Rapid gain and loss of predator recognition by an evolutionarily naÃ ⁻ ve lizard. Austral Ecology, 2022, 47, 641-652.	1.5	3
144	Cathelicidin-3 Associated With Serum Extracellular Vesicles Enables Early Diagnosis of a Transmissible Cancer. Frontiers in Immunology, 2022, 13, 858423.	4.8	3

#	Article	IF	CITATIONS
145	Protecting islands from pest invasion: Response to Greenslade et al Biological Conservation, 2013, 157, 435-436.	4.1	2

Reconstruction of the predatory behaviour of the extinct marsupial thylacine (Thylacinus) Tj ETQq000 rgBT /Overlock 10 Tf 50 702 Td (1.7

147	The Devil is in the detail: conservation biology, animal philosophies and the role of animal ethics committees. , 2012, , 79-88.		2
148	Historical Ecology for Conservation Managers. Conservation Biology, 2004, 18, 281-282.	4.7	1
149	Reintroduction of Tasmanian devils to mainland Australia can restore top-down control in ecosystems where dingoes have been extirpated: A response to Baker et al. 2016 and Fancourt & Mooney 2016. Biological Conservation, 2016, 196, 20-21.	4.1	1
150	Dasyurus maculatus. Mammalian Species, 0, , .	0.7	1
151	Long-Distance Movements of Feral Cats in Semi-Arid South Australia and Implications for Conservation Management. Animals, 2021, 11, 3125.	2.3	1
152	Conservation Biology 5: Carnivore Conservation. Austral Ecology, 2005, 30, 485-486.	1.5	0