Virginia E Papaioannou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225112/publications.pdf

Version: 2024-02-01

139 papers 18,000 citations

25423 59 h-index 127 g-index

148 all docs $\begin{array}{c} 148 \\ \\ \text{docs citations} \end{array}$

148 times ranked 20366 citing authors

#	Article	IF	CITATIONS
1	Alternative Sources of Human Embryonic Stem Cells. , 2019, , 125-132.		1
2	The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nature Genetics, 2019, 51, 117-127.	9.4	144
3	<i>Tbx6</i> controls left-right asymmetry through regulation of <i>Gdf1</i> . Biology Open, 2018, 7, .	0.6	8
4	Postimplantation Mga expression and embryonic lethality of two gene-trap alleles. Gene Expression Patterns, 2018, 27, 31-35.	0.3	8
5	Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. New England Journal of Medicine, 2017, 376, 742-754.	13.9	120
6	Dynamic maternal and fetal Notch activity and expression in placentation. Placenta, 2017, 55, 5-12.	0.7	15
7	Cell lineage of timed cohorts of <i>Tbx6 </i> -expressing cells in wild type and <i>Tbx6 </i> mutant embryos. Biology Open, 2017, 6, 1065-1073.	0.6	19
8	Concepts of Cell Lineage in Mammalian Embryos. Current Topics in Developmental Biology, 2016, 117, 185-197.	1.0	7
9	Unique functions of Gata4 in mouse liver induction and heart development. Developmental Biology, 2016, 410, 213-222.	0.9	23
10	Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. Journal of Clinical Investigation, 2016, 126, 3063-3079.	3.9	101
11	Vascular Notch proteins and Notch signaling in the peri-implantation mouse uterus. Vascular Cell, 2015, 7, 9.	0.2	21
12	<i>Mga</i> is essential for the survival of pluripotent cells during peri-implantation development. Development (Cambridge), 2015, 142, 31-40.	1.2	35
13	T-Box Genes and Developmental Anomalies. , 2015, , 635-652.		0
14	<i>Tbx4</i> interacts with the short stature homeobox gene <i>Shox2</i> in limb development. Developmental Dynamics, 2014, 243, 629-639.	0.8	14
15	Nature and extent of left/right axis defects in <i>T^{Wis}/T^{Wis}</i> mutant mouse embryos. Developmental Dynamics, 2014, 243, 1046-1053.	0.8	13
16	The T-box gene family: emerging roles in development, stem cells and cancer. Development (Cambridge), 2014, 141, 3819-3833.	1.2	246
17	On the fate of primordial germ cells injected into early mouse embryos. Developmental Biology, 2014, 385, 155-159.	0.9	24
18	The T-box Transcription Factors TBX2 and TBX3 in Mammary Gland Development and Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2013, 18, 143-147.	1.0	58

#	Article	IF	Citations
19	Stem Cells from Early Mammalian Embryos. , 2013, , 41-57.		O
20	Alternate Sources of Human Embryonic Stem Cells. , 2013, , 303-310.		0
21	A Retrotransposon Insertion in the 5′ Regulatory Domain of Ptf1a Results in Ectopic Gene Expression and Multiple Congenital Defects in Danforth's Short Tail Mouse. PLoS Genetics, 2013, 9, e1003206.	1.5	20
22	<i>Msx1</i> and <i>Tbx2</i> antagonistically regulate <i>Bmp4</i> expression during the bud-to-cap stage transition in tooth development. Development (Cambridge), 2013, 140, 2697-2702.	1.2	29
23	Investigating the Role of Tbx4 in the Female Germline in Mice1. Biology of Reproduction, 2013, 89, 148.	1.2	5
24	Lack of Genetic Interaction between Tbx20 and Tbx3 in Early Mouse Heart Development. PLoS ONE, 2013, 8, e70149.	1.1	3
25	Multiple Roles and Interactions of Tbx4 and Tbx5 in Development of the Respiratory System. PLoS Genetics, 2012, 8, e1002866.	1.5	175
26	The ulnar-mammary syndrome gene, <i>Tbx3 </i> , is a direct target of the retinoic acid signaling pathway, which regulates its expression during mouse limb development. Molecular Biology of the Cell, 2012, 23, 2362-2372.	0.9	19
27	Early Embryonic Lethality in Genetically Engineered Mice: Diagnosis and Phenotypic Analysis. Veterinary Pathology, 2012, 49, 64-70.	0.8	45
28	The murine allantois: a model system for the study of blood vessel formation. Blood, 2012, 120, 2562-2572.	0.6	42
29	Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Human Molecular Genetics, 2012, 21, 1217-1229.	1.4	68
30	Candidate Gene Approach Identifies Multiple Genes and Signaling Pathways Downstream of Tbx4 in the Developing Allantois. PLoS ONE, 2012, 7, e43581.	1.1	11
31	Diverse functional networks of <i>Tbx3</i> in development and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 273-283.	6.6	56
32	Interaction of Wnt3a, Msgn1 and Tbx6 in neural versus paraxial mesoderm lineage commitment and paraxial mesoderm differentiation in the mouse embryo. Developmental Biology, 2012, 367, 1-14.	0.9	78
33	Dynamic expression of Tbx2 subfamily genes in development of the mouse reproductive system. Developmental Dynamics, 2012, 241, 365-375.	0.8	22
34	Dissociation of the Glucose and Lipid Regulatory Functions of FoxO1 by Targeted Knockin of Acetylation-Defective Alleles in Mice. Cell Metabolism, 2011, 14, 587-597.	7.2	60
35	Alternative Sources of Human Embryonic Stem Cells. , 2011, , 215-222.		O
36	Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos. Stem Cells International, 2011, 2011, 1-9.	1.2	20

#	Article	IF	Citations
37	Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature, 2011, 470, 394-398.	13.7	233
38	Dynamic expression of Tbx2 and Tbx3 in developing mouse pancreas. Gene Expression Patterns, 2011, 11, 476-483.	0.3	10
39	Identity and fate of <i>Tbx4</i> à€expressing cells reveal developmental cell fate decisions in the allantois, limb, and external genitalia. Developmental Dynamics, 2011, 240, 2290-2300.	0.8	42
40	Expression of <i>Slit</i> and <i>Robo</i> genes in the developing mouse heart. Developmental Dynamics, 2010, 239, 3303-3311.	0.8	38
41	Tbx4 and Tbx5 Acting in Connective Tissue Are Required for Limb Muscle and Tendon Patterning. Developmental Cell, 2010, 18, 148-156.	3.1	130
42	Remission of Type 1 Diabetes after Anti-CD3 Antibody Treatment and Transplantation of Embryonic Pancreatic Precursors. Endocrinology, 2009, 150, 4512-4520.	1.4	11
43	Promotion of \hat{l}^2 -Cell Differentiation in Pancreatic Precursor Cells by Adult Islet Cells. Endocrinology, 2009, 150, 570-579.	1.4	12
44	Loss of Tbx2 delays optic vesicle invagination leading to small optic cups. Developmental Biology, 2009, 333, 360-372.	0.9	36
45	Non-viable human embryos as a source of viable cells for embryonic stem cell derivation. Reproductive BioMedicine Online, 2009, 18, 301-308.	1.1	20
46	Alternative Strategies for the Derivation of Human Embryonic Stem Cell Lines and the Role of Dead Embryos. Current Stem Cell Research and Therapy, 2009, 4, 81-86.	0.6	9
47	Teasing out T-box targets in early mesoderm. Current Opinion in Genetics and Development, 2008, 18, 418-425.	1.5	65
48	Tbx3 Is Required for Outflow Tract Development. Circulation Research, 2008, 103, 743-750.	2.0	91
49	The oocyte population is not renewed in transplanted or irradiated adult ovaries. Human Reproduction, 2008, 23, 2326-2330.	0.4	60
50	Tbx6 Regulates Left/Right Patterning in Mouse Embryos through Effects on Nodal Cilia and Perinodal Signaling. PLoS ONE, 2008, 3, e2511.	1.1	69
51	Molecular Pathway for the Localized Formation of the Sinoatrial Node. Circulation Research, 2007, 100, 354-362.	2.0	331
52	Tbx4 is not required for hindlimb identity or post-bud hindlimb outgrowth. Development (Cambridge), 2007, 134, 93-103.	1.2	73
53	Visualization of outflow tract development in the absence of Tbx1 using an FgF10 enhancer trap transgene. Developmental Dynamics, 2007, 236, 821-828.	0.8	49
54	Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis, 2007, 45, 768-775.	0.8	130

#	Article	IF	Citations
55	TM1 and TM2: two mutant alleles that constitute a genetic trait controlling thymocyte development. Immunogenetics, 2007, 59, 473-477.	1.2	2
56	Dose-Dependent Interaction of Tbx1 and Crkl and Locally Aberrant RA Signaling in a Model of del22q11 Syndrome. Developmental Cell, 2006, 10, 81-92.	3.1	186
57	Does prepatterning occur in the mouse egg? (Reply). Nature, 2006, 442, E4-E4.	13.7	3
58	Segmental expression of the T-box transcription factor, Tbx2, during early somitogenesis. Developmental Dynamics, 2006, 235, 3080-3084.	0.8	6
59	Live imaging of fluorescent proteins in chordate embryos: From ascidians to mice. Microscopy Research and Technique, 2006, 69, 160-167.	1.2	34
60	T-Box Genes in Vertebrate Development. Annual Review of Genetics, 2005, 39, 219-239.	3.2	370
61	The first cleavage of the mouse zygote predicts the blastocyst axis. Nature, 2005, 434, 391-395.	13.7	130
62	Tbx3, the ulnar-mammary syndrome gene, and Tbx2 interact in mammary gland development through a p19Arf/p53-independent pathway. Developmental Dynamics, 2005, 234, 922-933.	0.8	72
63	Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. Journal of Cell Science, 2005, 118, 505-515.	1.2	242
64	Developmental potential and behavior of tetraploid cells in the mouse embryo. Developmental Biology, 2005, 288, 150-159.	0.9	94
65	Tbx1 is required for proper neural crest migration and to stabilize spatial patterns during middle and inner ear development. Mechanisms of Development, 2005, 122, 199-212.	1.7	65
66	The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Human Molecular Genetics, 2004, 13, 2829-2840.	1.4	230
67	Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice., 2004, 4, 33.		233
68	Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development (Cambridge), 2004, 131, 5041-5052.	1.2	258
69	Unusual misregulation of RNA splicing caused by insertion of a transposable element into the T (Brachyury) locus. BMC Genomics, 2003, 4, 14.	1.2	3
70	Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis, 2003, 36, 40-47.	0.8	116
71	Technicolour transgenics: imaging tools for functional genomics in the mouse. Nature Reviews Genetics, 2003, 4, 613-625.	7.7	157
72	Critical role for Tbx6 in mesoderm specification in the mouse embryo. Mechanisms of Development, 2003, 120, 837-847.	1.7	57

#	Article	IF	Citations
73	Mammary gland, limb and yolk sac defects in mice lackingTbx3,the gene mutated in human ulnar mammary syndrome. Development (Cambridge), 2003, 130, 2263-2273.	1.2	252
74	Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development (Cambridge), 2003, 130, 2681-2693.	1.2	208
75	Embryonic stem cells and mouse models of human syndromes: examples from the T-box gene family. Reproductive BioMedicine Online, 2002, 4, 68-71.	1.1	10
76	Can mammalian cloning combined with embryonic stem cell technologies be used to treat human diseases?. Genome Biology, 2002, 3, reviews1023.1.	13.9	5
77	Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mechanisms of Development, 2002, 119, 127-135.	1.7	46
78	The mouse rib-vertebrae mutation is a hypomorphic Tbx6 allele. Mechanisms of Development, 2002, 119, 251-256.	1.7	67
79	DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nature Genetics, 2001, 27, 286-291.	9.4	977
80	The stem cells of early embryos. Differentiation, 2001, 68, 159-166.	1.0	43
81	T-box genes in development: From hydra to humans. International Review of Cytology, 2001, 207, 1-70.	6.2	172
82	The McLaren effecta personal view. International Journal of Developmental Biology, 2001, 45, 483-6.	0.3	0
83	Mapping and expression analysis of the mouse ortholog of Xenopus Eomesodermin. Mechanisms of Development, 1999, 81, 205-208.	1.7	74
84	The Ascendency of Developmental Genetics, or How the T Complex Educated a Generation of Developmental Biologists. Genetics, 1999, 151, 421-425.	1.2	7
85	Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature, 1998, 391, 695-697.	13.7	392
86	The T-box gene family. BioEssays, 1998, 20, 9-19.	1.2	280
87	Expression of T-box genes Tbx2–Tbx5 during chick organogenesis. Mechanisms of Development, 1998, 74, 165-169.	1.7	138
88	Cloning, Mapping, and Expression Analysis of TBX15, a New Member of the T-Box Gene Family. Genomics, 1998, 51, 68-75.	1.3	45
89	The T-box gene family. , 1998, 20, 9.		1
90	Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and development. Development (Cambridge), 1998, 125, 2499-509.	1.2	42

#	Article	IF	CITATIONS
91	The coming of age of the transgenic era. International Journal of Developmental Biology, 1998, 42, 841-6.	0.3	4
92	Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos Genes and Development, 1997, 11, 1226-1241.	2.7	484
93	T-box family reunion. Trends in Genetics, 1997, 13, 212-213.	2.9	38
94	Evidence of a role for T-â~genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mechanisms of Development, 1996, 56, 93-101.	1.7	250
95	Tbx6,a Mouse T-Box Gene Implicated in Paraxial Mesoderm Formation at Gastrulation. Developmental Biology, 1996, 180, 534-542.	0.9	245
96	Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein. Science, 1996, 274, 1377-1379.	6.0	805
97	Null Mutation of c- <i>fos</i> Impairs Structural and Functional Plasticities in the Kindling Model of Epilepsy. Journal of Neuroscience, 1996, 16, 3827-3836.	1.7	134
98	Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development., 1996, 206, 379-390.		581
99	The circadian system of c-fos deficient mice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178, 563-70.	0.7	67
100	Expression of the T-box family genes, Tbx1–Tbx5, during early mouse development. , 1996, 206, 379.		1
101	Mouse half embryos: Viability and allocation of cells in the blastocyst. Developmental Dynamics, 1995, 203, 393-398.	0.8	30
102	Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genetics, 1995, 11, 155-163.	9.4	712
103	Extracellular Matrix Remodeling at Implantation: Role of Hyaluronan. , 1995, , 125-152.		2
104	Requirement of FGF-4 for postimplantation mouse development. Science, 1995, 267, 246-249.	6.0	683
105	CSF-1 and mouse preimplantation development in vitro. Development (Cambridge), 1995, 121, 1333-9.	1.2	10
106	Effect of a Null Mutation of the c-fos Proto-Oncogene on Sexual Behavior of Male Mice1. Biology of Reproduction, 1994, 50, 1040-1048.	1.2	47
107	Differential Growth of the Mouse Preimplantation Embryo in Chemically Defined Media 1. Biology of Reproduction, 1994, 50, 1027-1033.	1.2	333
108	Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO Journal, 1994, 13, 3094-103.	3.5	77

#	Article	IF	Citations
109	Mice lacking major histocompatibility complex class I and class II molecules Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3913-3917.	3.3	253
110	A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture Genes and Development, 1993, 7, 1309-1317.	2.7	363
111	Ontogeny of hyaluronan secretion during early mouse development. Development (Cambridge), 1993, 117, 483-92.	1.2	14
112	Ontogeny, pathology, oncology. International Journal of Developmental Biology, 1993, 37, 33-7.	0.3	14
113	Growth and differentiation of embryonic stem cells that lack an intact c-fos gene Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9306-9310.	3.3	68
114	RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 1992, 68, 869-877.	13.5	2,652
115	Distribution of hyaluronan in the mouse endometrium during the periimplantation period of pregnancy. Differentiation, 1992, 52, 61-68.	1.0	52
116	Effects of diapause on lethalYellow (Ay/Ay) mouse embryos. The Journal of Experimental Zoology, 1992, 263, 309-315.	1.4	5
117	Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice. Science, 1991, 253, 1417-1420.	6.0	669
118	Macrophage functions are regulated by the substratum of murine decidual stromal cells Journal of Clinical Investigation, 1990, 85, 1951-1958.	3.9	36
119	Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science, 1989, 245, 1234-1236.	6.0	102
120	In vivo culture of embryos in the immature mouse oviduct. Theriogenology, 1989, 31, 299-308.	0.9	14
121	Investigation of the tissue specificity of the lethalyellow (Ay) gene in mouse embryos. Genesis, 1988, 9, 155-165.	3.1	13
122	Defective anti-listerial responses in deciduoma of pseudopregnant mice. American Journal of Pathology, 1988, 133, 485-97.	1.9	23
123	The preimplantation pig embryo: cell number and allocation to trophectoderm and inner cell mass of the blastocyst in vivo and in vitro. Development (Cambridge), 1988, 102, 793-803.	1.2	19
124	Comparative aspects of embryo manipulation in mammals. , 1987, , 67-96.		6
125	Description of an embryonic lethal gene, I(5)-1, linked toWsh. Genesis, 1987, 8, 27-34.	3.1	4
126	Development of fertilized embryos transferred to oviducts of immature mice. Reproduction, 1986, 76, 603-608.	1.1	61

#	Article	IF	Citations
127	A simple method for counting nuclei in the preimplantation mouse embryo. Experientia, 1985, 41, 1207-1209.	1.2	61
128	Outgrowth of embryonal carcinoma cells from injected blastocysts in vitro correlates with abnormal chimera development in vivo. Experimental Cell Research, 1985, 156, 213-220.	1.2	14
129	The relationship between embryonic, embryonal carcinoma and embryo-derived stem cells. Cell Differentiation, 1984, 15, 155-161.	1.3	63
130	Lethal nonagouti (ax): Description of a second embryonic lethal at the agouti locus. Genesis, 1983, 4, 21-29.	3.1	17
131	Lineage analysis of inner cell mass and trophectoderm using microsurgically reconstituted mouse blastocysts. Journal of Embryology and Experimental Morphology, 1982, 68, 199-209.	0.5	35
132	Relationship between the parental origin of the <i>X</i> chromosomes, embryonic cell lineage and <i>X</i> chromosome expression in mice. Genetical Research, 1981, 37, 183-197.	0.3	72
133	Non-random X-chromosome expression early in mouse development. Genesis, 1981, 2, 305-315.	3.1	24
134	Genetic drift in a stock of laboratory mice. Laboratory Animals, 1980, 14, 11-13.	0.5	27
135	Preferential Expression of the Maternally Derived X Chromosome in Extraembryonic Tissues of the Mouse., 1978, 12, 361-377.		17
136	Participation of cultured teratocarcinoma cells in mouse embryogenesis. Journal of Embryology and Experimental Morphology, 1978, 44, 93-104.	0.5	27
137	Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell, 1977, 12, 873-882.	13.5	321
138	Fate of teratocarcinoma cells injected into early mouse embryos. Nature, 1975, 258, 70-73.	13.7	433
139	Origin of the ectoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. Journal of Embryology and Experimental Morphology, 1973, 30, 561-72.	0.5	77