Tibor Pasinszki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225092/publications.pdf

Version: 2024-02-01

304368 329751 1,789 93 22 37 h-index citations g-index papers 99 99 99 1850 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multiple applications of bio-graphene foam for efficient chromate ion removal and oil-water separation. Chemosphere, 2021, 263, 127790.	4.2	27
2	Synthesis, structure and <i>in vitro</i> antiproliferative effects of alkyne-linked 1,2,4-thiadiazole hybrids including erlotinib- and ferrocene-containing derivatives. RSC Advances, 2021, 11, 28685-28697.	1.7	3
3	Carbon Microsphere-Supported Metallic Nickel Nanoparticles as Novel Heterogeneous Catalysts and Their Application for the Reduction of Nitrophenol. Molecules, 2021, 26, 5680.	1.7	5
4	Carbon microspheres decorated with iron sulfide nanoparticles for mercury(II) removal from water. Journal of Materials Science, 2020, 55, 1425-1435.	1.7	22
5	Toward the synthesis of thiadiazole-based therapeutic agents: synthesis, spectroscopic study, X-ray analysis, and cross-coupling reactions of the key intermediate 3,5-diiodo-1,2,4-thiadiazole. Research on Chemical Intermediates, 2020, 46, 1507-1519.	1.3	4
6	Advances in Detecting Ciguatoxins in Fish. Toxins, 2020, 12, 494.	1.5	29
7	Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. Nanomaterials, 2020, 10, 917.	1.9	150
8	Advances in celiac disease testing. Advances in Clinical Chemistry, 2019, 91, 1-29.	1.8	11
9	Spectroscopy, structure, thermal and photochemical decomposition of 5-chloro-3-trifluoromethyl-1,2,4-thiadiazole: Generation of trifluoroacetonitrile N-sulfide. Journal of Molecular Structure, 2019, 1179, 118-125.	1.8	3
10	A ONE POT THREE-COMPONENT SYNTHESIS OF SPIROOXOINDOLES USING Cu-NANOPARTICLES GRAFTED ON CARBON MICROSPHERES AS CATALYST. European Chemical Bulletin, 2019, 8, 153.	2.7	1
11	Synthesis of 3,4-Dihydropyrano[c]chromenes Using Carbon Microsphere Supported Copper Nanoparticles (Cu-NP/C) Prepared from Loaded Cation Exchange Resin as a Catalyst. Current Organic Synthesis, 2019, 16, 288-293.	0.7	2
12	Synthesis, spectral- and theoretical study, x-ray analysis, and antiproliferative activity of 4,5-dihydrobenzoferroceno[1,2-d][1,2,3]selenadiazole and its benzo-fused analogue. Journal of Organometallic Chemistry, 2018, 863, 70-76.	0.8	10
13	Evidence of quasi-intramolecular redox reactions during thermal decomposition of ammonium hydroxodisulfitoferriate(III), (NH4)2[Fe(OH)(SO3)2]·H2O. Journal of Thermal Analysis and Calorimetry, 2018, 132, 493-502.	2.0	20
14	Copper nanoparticles grafted on carbon microspheres as novel heterogeneous catalysts and their application for the reduction of nitrophenol and one-pot multicomponent synthesis of hexahydroquinolines. New Journal of Chemistry, 2018, 42, 1092-1098.	1.4	43
15	The chemical identity of $\hat{a} \in \mathbb{Q}[Ag(py) \cdot sub>2 \cdot MnO \cdot sub>4 \cdot sub>\hat{a} \in \mathbb{Q}[Ag(py) \cdot sub>0 \cdot MnO \cdot sub>0 \cdot M$	Ђ . ВТQq1	h0.784314
16	Biosensors for Non-Invasive Detection of Celiac Disease Biomarkers in Body Fluids. Biosensors, 2018, 8, 55.	2.3	10
17	Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials, 2017, 27, 1702891.	7.8	209
18	Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors, 2017, 17, 1919.	2.1	132

#	Article	IF	Citations
19	Development of Vapor/Gas Sensors From Biopolymer Composites. , 2017, , 385-403.		12
20	High Influence of Potassium Bromide on Thermal Decomposition of Ammonia Borane ^{â€} . Journal of Physical Chemistry C, 2016, 120, 25276-25288.	1.5	13
21	On the FCNS⇆FC(NS) reaction: A matrix isolation and theoretical study. Journal of Molecular Spectroscopy, 2015, 310, 8-15.	0.4	4
22	Structure, spectroscopy, and thermal decomposition of 5-chloro-1,2,3,4-thiatriazole: a He I photoelectron, infrared, and quantum chemical study. Structural Chemistry, 2015, 26, 1603-1610.	1.0	3
23	Nanofurry magnetic carbon microspheres for separation processes and catalysis: synthesis, phase composition, and properties. Journal of Materials Science, 2015, 50, 7353-7363.	1.7	15
24	Structure, Stability, and Cycloaddition Reactions of Nitrile Selenides. Australian Journal of Chemistry, 2014, 67, 444.	0.5	2
25	Simulating the vibrational spectra of ionic liquid systems: 1-Ethyl-3-methylimidazolium acetate and its mixtures. Journal of Chemical Physics, 2014, 141, 024510.	1.2	77
26	Photolysis of Dimethylcarbamoyl Azide in an Argon Matrix: Spectroscopic Identification of Dimethylamino Isocyanate and 1,1-Dimethyldiazene. Journal of Organic Chemistry, 2013, 78, 11985-11991.	1.7	18
27	Generation and Spectroscopic Identification of CICNS, CINCS and NCCNS. Chemistry - A European Journal, 2013, 19, 17201-17208.	1.7	9
28	Generation, Spectroscopy, and Structure of Cyanoformyl Chloride and Cyanoformyl Bromide, XC(O)CN. Journal of Physical Chemistry A, 2012, 116, 3396-3403.	1.1	8
29	Matrix-isolation spectroscopic and computational study of [2C, 2N, 2S] isomers: Photochemical generation of SCNNCS and NCSNCS from NCSSCN. Journal of Molecular Structure, 2012, 1025, 117-123.	1.8	3
30	Generation and Spectroscopic Identification of Selenofulminic Acid and Its Methyl and Cyano Derivatives (XCNSe, X=H, CH ₃ , NC). Chemistry - A European Journal, 2012, 18, 2646-2652.	1.7	10
31	Editorial [Hot Topic: Covalent Pseudohalides (Guest Editor: Tibor Pasinszki)]. Current Organic Chemistry, 2011, 15, 1669-1669.	0.9	0
32	Covalent Cyanates and Fulminates. Current Organic Chemistry, 2011, 15, 1688-1699.	0.9	6
33	Synthesis, Spectroscopy, and Applications of Small Nitrile Oxides. Current Organic Chemistry, 2011, 15, 1720-1733.	0.9	12
34	Silicon and Germanium Azides. Current Organic Chemistry, 2011, 15, 1700-1719.	0.9	10
35	Generation, Identification, and Synthetic Applications of Nitrile Sulfides and Nitrile Selenides. Current Organic Chemistry, 2011, 15, 1734-1744.	0.9	12
36	Ground and ionic states of 1,2,5-thiadiazoles: An UV-photoelectron spectroscopic and theoretical study. Journal of Molecular Structure, 2010, 966, 85-91.	1.8	19

#	Article	IF	Citations
37	Synthesis, spectroscopy and structure of diiodofuroxan. Chemical Physics Letters, 2010, 487, 194-199.	1.2	3
38	Structure, Stability, and Generation of CH3CNS. Australian Journal of Chemistry, 2010, 63, 1686.	0.5	17
39	First Isolation and Spectroscopic Observation of Thiofulminic acid (HCNS). Chemistry - A European Journal, 2009, 15, 6100-6102.	1.7	24
40	Cycloaddition reactions of ICNO. Chemical Physics Letters, 2009, 473, 343-347.	1.2	6
41	Synthesis, Spectroscopy and Structure of the Parent Furoxan (HCNO) < sub>2 < /sub>. Journal of Physical Chemistry A, 2009, 113, 170-176.	1.1	24
42	A matrix isolation and computational study of the [C, N, F, S] isomers. Physical Chemistry Chemical Physics, 2009, 11, 9458.	1.3	18
43	Dimerisation of nitrile oxides: a quantum-chemical study. Physical Chemistry Chemical Physics, 2009, 11, 5263.	1.3	22
44	Quantum-chemical study of the structure and stability of pseudohalogens: OCN–NCO and its isomers. Physical Chemistry Chemical Physics, 2008, 10, 1411.	1.3	12
45	Gas-Phase Infrared and ab Initio Study of the Unstable CF3CNO Molecule and Its Stable Furoxan Ring Dimer. Journal of Physical Chemistry A, 2005, 109, 3864-3874.	1.1	18
46	Midinfrared and Quantum-Chemical Study of the Structure, Conformation, and Isomerization of the Unstable CH3CH2OCN Molecule. Journal of Physical Chemistry A, 2003, 107, 1720-1726.	1.1	13
47	Synthesis, spectroscopy and structure of CF3CH2OCN, CF3CH2NCO, and (CF3CH2O)2CNHElectronic supplementary information (ESI) available: Experimental and calculated infrared and Raman vibrational frequencies and intensities of CF3CH2OCN, (CF3CH2O)2CNH and CF3CH2NCO. See http://www.rsc.org/suppdata/cp/b2/b212777f/. Physical Chemistry Chemical Physics, 2003, 5, 1752-1759.	1.3	4
48	Quantum-chemical study of the structure and stability of ethynyl pseudohalides: HCC–NCO and its isomers. Physical Chemistry Chemical Physics, 2003, 5, 259-267.	1.3	15
49	Structure and stability of fluoronitrile oxide, FCNO: A quantum-chemical study. Physical Chemistry Chemical Physics, 2002, 4, 4298-4304.	1.3	9
50	Gas-Phase Spectroscopy of the Unstable Acetonitrile N-Oxide Molecule, CH3CNO. Journal of Physical Chemistry A, 2001, 105, 1244-1253.	1.1	32
51	Structure and Stability of Small Nitrile Sulfides and Their Attempted Generation from 1,2,5-Thiadiazoles. Journal of Physical Chemistry A, 2001, 105, 6258-6265.	1.1	18
52	Ground, excited and ionic states of unstable molecules. Journal of Electron Spectroscopy and Related Phenomena, 2000, 108, 63-73.	0.8	5
53	Penning Ionization Electron Spectroscopic and Ab Initio Study of the Interaction and Ionization of HNCO and HNCS with He*(23S) Metastable and Li(22S) Ground State Atoms. Journal of Physical Chemistry A, 1999, 103, 9195-9203.	1.1	14
54	Penning Ionization of NCCN by Experiment and Theory:  A Two-Dimensional Penning Ionization Electron Spectroscopic and Quantum Chemical Study. Journal of Physical Chemistry A, 1999, 103, 7170-7178.	1.1	8

#	Article	IF	CITATIONS
55	Two-Dimensional Penning Ionization Electron Spectroscopy of NNO, HCNO, and HNNN:Â Electronic Structure and the Interaction Potential with He*(23S) Metastable and Li(22S) Ground State Atoms. Journal of Physical Chemistry A, 1999, 103, 6746-6756.	1.1	34
56	Ultraviolet photoelectron spectroscopy of unstable nitrile oxides. Journal of Electron Spectroscopy and Related Phenomena, 1998, 97, 15-22.	0.8	4
57	Unstable Chloronitrile Oxide, ClCNO, and Its Stable Ring Dimer:Â Generation, Spectroscopy, and Structure. Journal of Physical Chemistry A, 1998, 102, 4939-4947.	1.1	29
58	Structure and spectroscopy of dihaloformaldoximes He I photoelectron, photoionization mass spectroscopy, mid-IR, Raman and ab initio study. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 43-51.	1.7	8
59	Substituted oximes and furoxans as precursors to unstable nitrile oxides. electronic and geometric structures by ultraviolet photoelectron spectroscopy, infrared spectroscopy and ab initio calculations. Journal of Molecular Structure, 1997, 408-409, 161-169.	1.8	12
60	Microwave Spectrum and Geometry of CyanogenN-Oxide, NCCNO. Journal of Molecular Spectroscopy, 1997, 181, 316-322.	0.4	26
61	Structures of Alkali Metal Pseudohalides:Â LiOCP, NaOCP, LiSCP, NaSCP. Inorganic Chemistry, 1996, 35, 2132-2135.	1.9	14
62	Open-chain and ring isomers of CN2OS. Ab initio study of structures and stabilities. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 333.	1.7	4
63	Geometric and electronic structure of dicyanofuroxan by experiment and theory. Journal of the Chemical Society Perkin Transactions II, 1996, , 179.	0.9	20
64	Structure of thionyl imides — the new isomer. Chemical Physics Letters, 1996, 250, 466-470.	1.2	4
65	Reconciling theory and experiment for SiH3NCO: A comment to a recent article. Journal of Organometallic Chemistry, 1996, 507, 279-280.	0.8	3
66	High resolution infrared spectroscopy of cyanogen Nâ€oxide, NCCNO. Journal of Chemical Physics, 1996, 105, 4457-4460.	1.2	20
67	Ground, Excited, and Ionic States of the NCCNO Molecule:Â A Hel Photoelectron, Infrared, Ultraviolet, and ab InitioInvestigation. The Journal of Physical Chemistry, 1996, 100, 16856-16863.	2.9	33
68	The structure of symmetrically substituted carbodiimides. Computational and Theoretical Chemistry, 1995, 331, 289-294.	1.5	8
69	The high resolution infrared spectroscopy of cyanogen diâ€Nâ€oxide (ONCCNO). Journal of Chemical Physics, 1995, 103, 3335-3340.	1.2	14
70	He I Photoelectron, Photoionization Mass Spectroscopy, Mid-Infrared, and ab Initio Study of the Unstable CH3OCN Molecule. The Journal of Physical Chemistry, 1995, 99, 1649-1654.	2.9	28
71	Equilibrium Structure of SiH3NCO: Comparison of Theory and Experiments. The Journal of Physical Chemistry, 1995, 99, 8604-8607.	2.9	7
72	Characterization of Ultrathin Films of Chloroaluminum Phthalocyanine during Layer-by-Layer Preparation on Graphite: PIES and UPS Study. The Journal of Physical Chemistry, 1995, 99, 12858-12862.	2.9	27

#	Article	IF	CITATIONS
73	Penning Ionization of CH3CN and CH3NC by Collision with He(23S) Metastable Atoms. The Journal of Physical Chemistry, 1995, 99, 14678-14685.	2.9	31
74	Theoretical Study of NCNCO and Its Isomers. Inorganic Chemistry, 1995, 34, 945-951.	1.9	19
75	Gas-Phase Generation of the Unstable BrCNO Molecule and Its Stable Dibromofuroxan Dimer. He I Photoelectron, Photoionization Mass Spectroscopy, Mid-Infrared, and ab Initio Studies. The Journal of Physical Chemistry, 1995, 99, 6401-6409.	2.9	35
76	Cyanogen Di-N-oxide (ONCCNO): Gas Phase Generation and a Hel Photoelectron, Photoionization Mass Spectroscopy, Midinfrared, and Ab Initio Study. Journal of the American Chemical Society, 1995, 117, 8425-8430.	6.6	35
77	Gas-phase generation and spectroscopy of the unstable NCCNO molecule. Journal of the Chemical Society Chemical Communications, 1995, , 1901.	2.0	19
78	On the variation of bond length during large-amplitude bending from electron diffraction: the case of CaCl2. Journal of Molecular Structure, 1994, 326, 213-219.	1.8	5
79	The ab initio structures of CH3PCO, CH3OCP and their sulphur and selenium derivatives. Computational and Theoretical Chemistry, 1994, 303, 39-42.	1.5	1
80	The Structure of Pseudohalides-The Existence of a New Isomer. Journal of the American Chemical Society, 1994, 116, 6303-6306.	6.6	25
81	The ab initio equilibrium structures of germyl pseudohalides. Chemical Physics Letters, 1993, 205, 123-128.	1.2	7
82	The structure of beryllium pseudohalides. Chemical Physics Letters, 1993, 215, 395-400.	1.2	7
83	An ab initio study of the geometries of boron pseudohalides. Chemical Physics Letters, 1993, 207, 384-388.	1.2	1
84	The equilibrium conformation of ethyl isocyanate revisited. Journal of the American Chemical Society, 1993, 115, 1500-1502.	6.6	16
85	Ab initio study of the equilibrium structure of silyl pseudohalides. The Journal of Physical Chemistry, 1993, 97, 1538-1541.	2.9	11
86	Penning ionization of thiocyanatomethane, isocyanatomethane, and isothiocyanatomethane by collision with helium*(23S) metastable atoms. The Journal of Physical Chemistry, 1993, 97, 12718-12724.	2.9	25
87	The photoelectron spectra of methyl pseudohalides. International Journal of Quantum Chemistry, 1992, 44, 443-453.	1.0	12
88	Photoelectron spectroscopic investigation of phenyl isocyanato silanes. Monatshefte Für Chemie, 1992, 123, 949-955.	0.9	6
89	Hel photoelectron spectra of alkyl pseudohalides. Journal of Electron Spectroscopy and Related Phenomena, 1992, 58, 159-165.	0.8	3
90	The equilibrium structure of methyl pseudohalides: an ab initio study. Chemical Physics Letters, 1992, 189, 245-251.	1.2	20

TIBOR PASINSZKI

#	Article	IF	CITATIONS
91	Photoelectron spectroscopic studies of the silicon pseudohalides: relationship between geometrical and electronic structure. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3805-3810.	1.7	15
92	Photoelectron spectroscopic investigation of perimidine derivatives. Structural Chemistry, $1990, 1, 367-370$.	1.0	6
93	UPS and quantum-chemical study of compounds containing SiNCX (X=0, S) groups. Journal of Molecular Structure, 1988, 175, 411-416.	1.8	7