
Joao Fadista

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225041/publications.pdf Version: 2024-02-01

Ιολο Ελριστλ

#	Article	IF	CITATIONS
1	Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.	13.7	1,190
2	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
3	Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13924-13929.	3.3	407
4	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	9.4	365
5	Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes. Diabetes, 2014, 63, 2962-2976.	0.3	326
6	A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets. Cell Metabolism, 2012, 16, 122-134.	7.2	323
7	The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. European Journal of Human Genetics, 2016, 24, 1202-1205.	1.4	225
8	Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. Cell Metabolism, 2016, 23, 1067-1077.	7.2	194
9	TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 2014, 23, 6419-6431.	1.4	166
10	The Diabetes Susceptibility Gene Clec16a Regulates Mitophagy. Cell, 2014, 157, 1577-1590.	13.5	166
11	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.	1.5	164
12	Copy number variation in the bovine genome. BMC Genomics, 2010, 11, 284.	1.2	145
13	A Snapshot of CNVs in the Pig Genome. PLoS ONE, 2008, 3, e3916.	1.1	114
14	Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms. Cell, 2014, 156, 343-358.	13.5	113
15	LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics, 2017, 33, 471-474.	1.8	102
16	Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nature Communications, 2020, 11, 5976.	5.8	102
17	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	3.0	101
18	The <i>CTRB1/2</i> Locus Affects Diabetes Susceptibility and Treatment via the Incretin Pathway. Diabetes, 2013, 62, 3275-3281.	0.3	96

Joao Fadista

#	Article	IF	CITATIONS
19	Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Human Molecular Genetics, 2015, 24, 1945-1955.	1.4	89
20	Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nature Communications, 2020, 11, 4912.	5.8	89
21	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	5.8	87
22	Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC Genomics, 2011, 12, 557.	1.2	74
23	Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans. Diabetologia, 2016, 59, 744-754.	2.9	64
24	Shared genetic etiology between idiopathic pulmonary fibrosis and COVID-19 severity. EBioMedicine, 2021, 65, 103277.	2.7	63
25	Glucose-Induced Changes in Gene Expression in Human Pancreatic Islets: Causes or Consequences of Chronic Hyperglycemia. Diabetes, 2017, 66, 3013-3028.	0.3	61
26	Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes. Human Molecular Genetics, 2014, 23, 5733-5749.	1.4	51
27	Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nature Communications, 2019, 10, 3927.	5.8	49
28	Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Molecular and Cellular Endocrinology, 2013, 375, 35-42.	1.6	47
29	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.3	47
30	Expression of Phosphofructokinase in Skeletal Muscle Is Influenced by Genetic Variation and Associated With Insulin Sensitivity. Diabetes, 2014, 63, 1154-1165.	0.3	41
31	A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes. PLoS Genetics, 2016, 12, e1006033.	1.5	39
32	Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. Molecular Metabolism, 2020, 32, 160-167.	3.0	37
33	Genome-wide Study Identifies Association between HLA-Bâ^—55:01 and Self-Reported Penicillin Allergy. American Journal of Human Genetics, 2020, 107, 612-621.	2.6	34
34	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	2.4	31
35	Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes. Brain, 2022, 145, 555-568.	3.7	29
36	MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes. Cell Reports, 2016, 14, 1991-2002.	2.9	27

Joao Fadista

#	Article	IF	CITATIONS
37	Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. Npj Systems Biology and Applications, 2018, 4, 25.	1.4	25
38	CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion. Diabetologia, 2016, 59, 1928-1937.	2.9	24
39	Genome-wide association study of Hirschsprung disease detects a novel low-frequency variant at the RET locus. European Journal of Human Genetics, 2018, 26, 561-569.	1.4	24
40	A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells. PLoS ONE, 2016, 11, e0150880.	1.1	19
41	Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes. Diabetologia, 2016, 59, 1702-1713.	2.9	19
42	GNAS gene is an important regulator of insulin secretory capacity in pancreatic Î ² -cells. Gene, 2019, 715, 144028.	1.0	19
43	Genome-wide meta-analysis identifies <i>BARX1</i> and <i>EML4-MTA3</i> as new loci associated with infantile hypertrophic pyloric stenosis. Human Molecular Genetics, 2019, 28, 332-340.	1.4	18
44	RNA sequencing: current and prospective uses in metabolic research. Journal of Molecular Endocrinology, 2014, 53, R93-R101.	1.1	17
45	Genomic Position Mapping Discrepancies of Commercial SNP Chips. PLoS ONE, 2012, 7, e31025.	1.1	12
46	Integrating genetics with newborn metabolomics in infantile hypertrophic pyloric stenosis. Metabolomics, 2021, 17, 7.	1.4	3
47	Genetic regulation of spermine oxidase activity and cancer risk: a Mendelian randomization study.	1.6	1