
Uwe Ulbrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1225022/publications.pdf Version: 2024-02-01

I WE HIRDICH

#	Article	IF	CITATIONS
1	Evaluating decadal predictions of northern hemispheric cyclone frequencies. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 66, 22830.	0.8	20
2	Kinematic vorticity number – a tool for estimating vortex sizes and circulations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 29464.	0.8	17
3	Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 29391.	0.8	79
4	Modeling hourly weather-related road traffic variations for different vehicle types in Germany. European Transport Research Review, 2022, 14, .	2.3	2
5	Quantification of meteorological conditions for rockfall triggers in Germany. Natural Hazards and Earth System Sciences, 2022, 22, 2117-2130.	1.5	2
6	Introduction to Freva – A Free Evaluation System Framework for Earth System Modeling. Journal of Open Research Software, 2021, 9, 13.	2.7	11
7	Present and future diurnal hourly precipitation in 0.11° EURO-CORDEX models and at convection-permitting resolution. Environmental Research Communications, 2021, 3, 055002.	0.9	12
8	Recalibrating decadal climate predictions – what is an adequate model for the drift?. Geoscientific Model Development, 2021, 14, 4335-4355.	1.3	5
9	Artificial intelligence reconstructs missing climate information. Nature Geoscience, 2020, 13, 408-413.	5.4	94
10	Subhourly rainfall in a convection-permitting model. Environmental Research Letters, 2020, 15, 034031.	2.2	17
11	Implications of Winter NAO Flavors on Present and Future European Climate. Climate, 2020, 8, 13.	1.2	28
12	Predictive modeling of hourly probabilities for weather-related road accidents. Natural Hazards and Earth System Sciences, 2020, 20, 2857-2871.	1.5	6
13	Assessing the impact of sea surface temperatures on a simulated medicane using ensemble simulations. Natural Hazards and Earth System Sciences, 2019, 19, 941-955.	1.5	21
14	The Diurnal Nature of Future Extreme Precipitation Intensification. Geophysical Research Letters, 2019, 46, 7680-7689.	1.5	25
15	Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution. Earth System Dynamics, 2019, 10, 901-917.	2.7	7
16	Modelling serial clustering and interâ€annual variability of European winter windstorms based on largeâ€scale drivers. International Journal of Climatology, 2018, 38, 3044-3057.	1.5	20
17	Large-scale secondary circulations in a limited area model – the impact of lateral boundaries and resolution. Tellus, Series A: Dynamic Meteorology and Oceanography, 2018, 70, 1-15.	0.8	2
18	Seasonal Cycle in German Daily Precipitation Extremes. Meteorologische Zeitschrift, 2018, 27, 3-13.	0.5	10

#	Article	IF	CITATIONS
19	A classification algorithm for selective dynamical downscaling of precipitation extremes. Hydrology and Earth System Sciences, 2018, 22, 4183-4200.	1.9	11
20	Parametric decadal climate forecast recalibration (DeFoReSt 1.0). Geoscientific Model Development, 2018, 11, 351-368.	1.3	19
21	The Tropical Transition of the October 1996 Medicane in the Western Mediterranean Sea: A Warm Seclusion Event. Monthly Weather Review, 2017, 145, 2575-2595.	0.5	36
22	Quantifying the extremity of windstorms for regions featuring infrequent events. Atmospheric Science Letters, 2017, 18, 315-322.	0.8	5
23	Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change. Natural Hazards and Earth System Sciences, 2017, 17, 1177-1190.	1.5	51
24	Precipitation extremes on multiple timescales – Bartlett–Lewis rectangular pulse model and intensity–duration–frequency curves. Hydrology and Earth System Sciences, 2017, 21, 6501-6517.	1.9	19
25	Estimating uncertainties from high resolution simulations of extreme wind storms and consequences for impacts. Meteorologische Zeitschrift, 2016, 25, 531-541.	0.5	14
26	Probabilistic evaluation of decadal prediction skill regarding Northern Hemisphere winter storms. Meteorologische Zeitschrift, 2016, 25, 721-738.	0.5	35
27	An analysis of uncertainties and skill in forecasts of winter storm losses. Natural Hazards and Earth System Sciences, 2016, 16, 2391-2402.	1.5	9
28	An approach to build an event set of European windstorms based on ECMWFÂEPS. Natural Hazards and Earth System Sciences, 2016, 16, 255-268.	1.5	18
29	MiKlip: A National Research Project on Decadal Climate Prediction. Bulletin of the American Meteorological Society, 2016, 97, 2379-2394.	1.7	78
30	Different longâ€ŧerm trends of extraâ€ŧropical cyclones and windstorms in <scp>ERAâ€20C</scp> and <scp>NOAAâ€20CR</scp> reanalyses. Atmospheric Science Letters, 2016, 17, 586-595.	0.8	46
31	Projected Change—Atmosphere. Regional Climate Studies, 2016, , 149-173.	1.2	4
32	Verification and process oriented validation of the MiKlip decadal prediction system. Meteorologische Zeitschrift, 2016, 25, 629-630.	0.5	3
33	Systematic largeâ€scale secondary circulations in a regional climate model. Geophysical Research Letters, 2015, 42, 4142-4149.	1.5	19
34	Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Natural Hazards and Earth System Sciences, 2015, 15, 2525-2544.	1.5	87
35	Identification of storm surge events over the German Bight from atmospheric reanalysis and climate model data. Natural Hazards and Earth System Sciences, 2015, 15, 1437-1447.	1.5	6
36	Discontinuous Daily Temperatures in the WATCH Forcing Datasets. Journal of Hydrometeorology, 2015, 16, 465-472.	0.7	13

#	Article	IF	CITATIONS
37	Linking teleconnection patterns to European temperature– aÂmultiple linear regression model. Meteorologische Zeitschrift, 2015, 24, 411-423.	0.5	38
38	Perception and use of uncertainty in severe weather warnings by emergency services in Germany. Atmospheric Research, 2015, 158-159, 292-301.	1.8	46
39	Floods and climate: emerging perspectives for flood risk assessment and management. Natural Hazards and Earth System Sciences, 2014, 14, 1921-1942.	1.5	239
40	Preface: Understanding dynamics and current developments of climate extremes in the Mediterranean region. Natural Hazards and Earth System Sciences, 2014, 14, 309-316.	1.5	12
41	Mediterranean cyclones and windstorms in a changing climate. Regional Environmental Change, 2014, 14, 1873-1890.	1.4	64
42	The climate of the Mediterranean region: research progress and climate change impacts. Regional Environmental Change, 2014, 14, 1679-1684.	1.4	115
43	Decadal windstorm activity in the North Atlantic-European sector and its relationship to the meridional overturning circulation in an ensemble of simulations with a coupled climate model. Climate Dynamics, 2014, 43, 1545-1555.	1.7	8
44	Southern Hemisphere winter cyclone activity under recent and future climate conditions in multiâ€model <scp>AOGCM</scp> simulations. International Journal of Climatology, 2014, 34, 3400-3416.	1.5	34
45	On the relationship between hydro-meteorological patterns and flood types. Journal of Hydrology, 2014, 519, 3249-3262.	2.3	86
46	Past and Current Climate Changes in the Mediterranean Region. Advances in Global Change Research, 2013, , 9-51.	1.6	9
47	Future Climate Projections. Advances in Global Change Research, 2013, , 53-118.	1.6	24
48	Projections of global warming-induced impacts on winter storm losses in the German private household sector. Climatic Change, 2013, 121, 195-207.	1.7	23
49	IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bulletin of the American Meteorological Society, 2013, 94, 529-547.	1.7	391
50	Vb cyclones and associated rainfall extremes over Central Europe under present day and climate change conditions. Meteorologische Zeitschrift, 2013, 22, 649-660.	0.5	34
51	Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?. Meteorologische Zeitschrift, 2013, 22, 61-68.	0.5	77
52	Identification and ranking of extraordinary rainfall events over Northwest Italy: The role of Atlantic moisture. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2085-2097.	1.2	62
53	High-frequency noise caused by wind in large ring laser gyroscope data. Journal of Seismology, 2012, 16, 777-786.	0.6	6
54	Introduction: Mediterranean Climate—Background Information. , 2012, , xxxv-xc.		49

#	Article	IF	CITATIONS
55	Climate of the Mediterranean. , 2012, , 301-346.		78
56	Severe marine storms in the Northern Adriatic: Characteristics and trends. Physics and Chemistry of the Earth, 2012, 40-41, 93-105.	1.2	60
57	Program focuses on climate of the Mediterranean region. Eos, 2012, 93, 105-106.	0.1	31
58	Reanalysis suggests long-term upward trends in European storminess since 1871. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	92
59	High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany. Natural Hazards and Earth System Sciences, 2011, 11, 2821-2833.	1.5	50
60	Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations. Natural Hazards and Earth System Sciences, 2011, 11, 1351-1370.	1.5	98
61	The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Climate Dynamics, 2011, 36, 337-354.	1.7	58
62	The Skill of Seasonal Ensemble Prediction Systems to Forecast Wintertime Windstorm Frequency over the North Atlantic and Europe. Monthly Weather Review, 2011, 139, 3052-3068.	0.5	20
63	Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. International Journal of Climatology, 2010, 30, 1289-1300.	1.5	79
64	Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Natural Hazards and Earth System Sciences, 2010, 10, 1379-1391.	1.5	109
65	European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Climate Research, 2010, 42, 27-43.	0.4	77
66	Benefits and limitations of regional multi-model ensembles for storm loss estimations. Climate Research, 2010, 44, 211-225.	0.4	29
67	Extra-tropical cyclones in the present and future climate: a review. Theoretical and Applied Climatology, 2009, 96, 117-131.	1.3	430
68	Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dynamics, 2009, 32, 711-737.	1.7	191
69	On the development of strong ridge episodes over the eastern North Atlantic. Geophysical Research Letters, 2009, 36, .	1.5	35
70	Changing Northern Hemisphere Storm Tracks in an Ensemble of IPCC Climate Change Simulations. Journal of Climate, 2008, 21, 1669-1679.	1.2	207
71	Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorologische Zeitschrift, 2008, 17, 575-587.	0.5	85
72	Property loss potentials for European midlatitude storms in a changing climate. Geophysical Research Letters, 2007, 34, .	1.5	80

#	Article	IF	CITATIONS
73	Modelling the impact of climate extremes: an overview of the MICE project. Climatic Change, 2007, 81, 163-177.	1.7	58
74	European winter precipitation extremes and large-scale circulation: a coupled model and its scenarios. Theoretical and Applied Climatology, 2007, 87, 85-102.	1.3	56
75	Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dynamics, 2007, 29, 195-210.	1.7	199
76	Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorologische Zeitschrift, 2006, 15, 279-291.	0.5	39
77	Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Research, 2006, 31, 59-74.	0.4	110
78	Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift, 2005, 14, 823-838.	0.5	160
79	Summer Floods in Central Europe – Climate Change Track?. Natural Hazards, 2005, 36, 165-189.	1.6	186
80	The 2003 European summer heatwaves and drought -synoptic diagnosis and impacts. Weather, 2004, 59, 209-216.	0.6	374
81	On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global and Planetary Change, 2004, 44, 181-193.	1.6	168
82	The central European floods of August 2002: Part 1 – Rainfall periods and flood development. Weather, 2003, 58, 371-377.	0.6	208
83	The central European floods of August 2002: Part 2 -Synoptic causes and considerations with respect to climatic change. Weather, 2003, 58, 434-442.	0.6	108
84	Decadal changes in the link between El Niño and springtime North Atlantic oscillation and European-North African rainfall. International Journal of Climatology, 2003, 23, 1293-1311.	1.5	97
85	Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 2003, 284, 244-252.	2.3	371
86	Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios. Physics and Chemistry of the Earth, 2001, 26, 853-861.	0.3	22
87	The Role of Ocean Dynamics for Low-Frequency Fluctuations of the NAO in a Coupled Ocean–Atmosphere GCM. Journal of Climate, 2000, 13, 2536-2549.	1.2	21
88	Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Climate Research, 2000, 15, 109-122.	0.4	107
89	A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dynamics, 1999, 15, 551-559.	1.7	318
90	Dependence of winter precipitation over Portugal on NAO and baroclinic wave activity. International Journal of Climatology, 1999, 19, 379-390.	1.5	107

#	Article	IF	CITATIONS
91	Midwinter Suppression of Northern Hemisphere Storm Track Activity in the Real Atmosphere and in GCM Experiments. Journals of the Atmospheric Sciences, 1997, 54, 1589-1599.	0.6	55
92	Verifikation einer Klimatologie objektiv bestimmter Nordatlantik-Zyklonen. Meteorologische Zeitschrift, 1996, 5, 24-30.	0.5	28
93	Faster Determination of the Intraseasonal Variability of Storm Tracks Using Murakami's Recursive Filter. Monthly Weather Review, 1995, 123, 578-581.	0.5	26
94	The effect of a regional increase in ocean surface roughness on the tropospheric circulation: a GCM experiment. Climate Dynamics, 1993, 8, 277-285.	1.7	5
95	Energy cycle diagnosis of two versions of a low resolution GCM. Meteorology and Atmospheric Physics, 1992, 50, 197-210.	0.9	4
96	The global energy cycle of stationary and transient atmospheric waves: Results from ECMWF analyses. Meteorology and Atmospheric Physics, 1991, 45, 125-138.	0.9	39
97	Windstorms, the Most Costly Natural Hazard in Europe. , 0, , 109-120.		13
98	Review Article: Atmospheric conditions inducing extreme precipitation over the Eastern and Western Mediterranean. , 0, , .		2