Vladimir O Stoyanovskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1224971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Properties of Bulk (1–x)Ni–xW Alloys in the Decomposition of 1,2-Dichloroethane with the Production of Carbon Nanomaterials. Kinetics and Catalysis, 2022, 63, 75-86.	1.0	6
2	Scaling up the Process of Catalytic Decomposition of Chlorinated Hydrocarbons with the Formation of Carbon Nanostructures. Processes, 2022, 10, 506.	2.8	5
3	Size effects on the formation of LaAlO3 phase in La-doped Î ³ -Al2O3 after hydrothermal treatment. Ceramics International, 2022, 48, 17449-17459.	4.8	3
4	Preparation of the Nanostructured Ni-Mg-O Oxide System by a Sol–Gel Technique at Varied pH. Nanomaterials, 2022, 12, 952.	4.1	9
5	One-pot functionalization of catalytically derived carbon nanostructures with heteroatoms for toxic-free environment. Applied Surface Science, 2022, 590, 153055.	6.1	7
6	Water purification from chlorobenzenes using heteroatom-functionalized carbon nanofibers produced on self-organizing Ni-Pd catalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107873.	6.7	7
7	Facile synthesis of triple Ni-Mo-W alloys and their catalytic properties in chemical vapor deposition of chlorinated hydrocarbons. Journal of Alloys and Compounds, 2021, 866, 158778.	5.5	11
8	Effect of carbon coating on the thermal stability of nanocrystalline χ-Al2O3. Materials Chemistry and Physics, 2020, 240, 122135.	4.0	6
9	Interaction of Pd and Rh with ZrCeYLaO2 support during thermal aging and its effect on the CO oxidation activity. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 117-133.	1.7	11
10	Effect of La Addition on the Performance of Three-Way Catalysts Containing Palladium and Rhodium. Topics in Catalysis, 2020, 63, 152-165.	2.8	11
11	Synthesis of nitrogen doped segmented carbon nanofibers via metal dusting of Ni-Pd alloy. Catalysis Today, 2020, 388-389, 312-312.	4.4	3
12	Partial Miscibility of Metals as a Key for Improved Properties. Materials Science Forum, 2020, 998, 151-156.	0.3	0
13	The Attractiveness of the Ternary Rh-Pd-Pt Alloys for CO Oxidation Process. Processes, 2020, 8, 928.	2.8	10
14	Effect of carbon shell on stabilization of single-phase lanthanum and praseodymium hexaaluminates prepared by a modified Pechini method. Ceramics International, 2020, 46, 29150-29159.	4.8	5
15	Transformation of alumina-supported Pt-Au alloyed nanoparticles into core-shell Pt@Au structures during high-temperature treatment. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	4
16	Adsorption of 1,2-Dichlorobenzene on a Carbon Nanomaterial Prepared by Decomposition of 1,2-Dichloroethane on Nickel Alloys. Russian Journal of Applied Chemistry, 2020, 93, 1873-1882.	0.5	6
17	Synthesis of binary Co–Mg–O oxide system and study of its behavior in reduction/oxidation cycling. International Journal of Hydrogen Energy, 2019, 44, 20690-20699. 	7.1	16
18	Synthesis and Study of Bimetallic Pd-Rh System Supported on Zirconia-Doped Alumina as a Component of Three-way Catalysts. Emission Control Science and Technology, 2019, 5, 363-377.	1.5	10

#	Article	IF	CITATIONS
19	Effect of Mo on the catalytic activity of Ni-based self-organizing catalysts for processing of dichloroethane into segmented carbon nanomaterials. Heliyon, 2019, 5, e02428.	3.2	22
20	Purification of exhaust gases from gasoline engine using adsorption-catalytic systems. Part 1: trapping of hydrocarbons by Ag-modified ZSM-5. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 945-959.	1.7	6
21	Synthesis and Functionalization of Filamentous Carbon Material via Decomposition of 1,2-Dichlorethane over Self-Organizing Ni-Mo Catalyst. Materials Science Forum, 2019, 950, 180-184.	0.3	5
22	Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 137-148.	1.7	12
23	Optical Spectroscopy Methods in the Estimation of the Thermal Stability of Bimetallic Pd–Rh/Al2O3 Three-Way Catalysts. Topics in Catalysis, 2019, 62, 296-304.	2.8	10
24	Prospect of Using Nanoalloys of Partly Miscible Rhodium and Palladium in Three-Way Catalysis. Topics in Catalysis, 2019, 62, 305-314.	2.8	17
25	Effect of metal ratio in alumina-supported Pd-Rh nanoalloys on its performance in three way catalysis. Journal of Alloys and Compounds, 2018, 749, 155-162.	5.5	25
26	The peculiarities of Au–Pt alloy nanoparticles formation during the decomposition of double complex salts. Journal of Alloys and Compounds, 2018, 740, 935-940.	5.5	16
27	Effect of carbon coating on spontaneous C12A7 whisker formation. Applied Surface Science, 2018, 444, 336-338.	6.1	8
28	The role of chemisorbed water in formation and stabilization of active sites on Pd/Alumina oxidation catalysts. Catalysis Today, 2018, 307, 102-110.	4.4	29
29	Stabilizing effect of the carbon shell on phase transformation of the nanocrystalline alumina particles. Ceramics International, 2018, 44, 4801-4806.	4.8	19
30	Optical spectroscopy of Rh3+ ions in the lanthanum-aluminum oxide systems. Journal of Luminescence, 2018, 204, 609-617.	3.1	11
31	Catalytic conversion of 1,2-dichloroethane over Ni-Pd system into filamentous carbon material. Catalysis Today, 2017, 293-294, 23-32.	4.4	32
32	Peculiarity of Rh bulk diffusion in La-doped alumina and its impact on CO oxidation over Rh/Al2O3. Catalysis Communications, 2017, 97, 18-22.	3.3	18
33	Nanocrystalline carbon coated alumina with enhanced phase stability at high temperatures. RSC Advances, 2017, 7, 54852-54860.	3.6	19
34	Study on reduction behavior of two-component Fe Mg O oxide system prepared via a sol-gel technique. International Journal of Hydrogen Energy, 2017, 42, 30543-30549.	7.1	10
35	Characterization and study on the thermal aging behavior of palladium–alumina catalysts. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1865-1874.	3.6	17
36	Effect of metal-metal and metal-support interaction on activity and stability of Pd-Rh/alumina in CO oxidation. Catalysis Today, 2017, 293-294, 73-81.	4.4	48

#	Article	IF	CITATIONS
37	Effect of Alumina Phase Transformation on Stability of Low-Loaded Pd-Rh Catalysts for CO Oxidation. Topics in Catalysis, 2017, 60, 152-161.	2.8	25
38	Carbon nanoreactor for the synthesis of nanocrystalline high-temperature oxide materials. Nanotechnologies in Russia, 2014, 9, 700-706.	0.7	13
39	Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catalysis Today, 2014, 238, 80-86.	4.4	49
40	Catalytic Purification of Exhaust Gases Over Pd–Rh Alloy Catalysts. Topics in Catalysis, 2013, 56, 1008-1014.	2.8	47
41	Optical spectroscopy of Pr3+-doped \hat{I}^3 -BiB3O6 crystals. Optical Materials, 2013, 36, 509-515.	3.6	3
42	Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Applied Catalysis B: Environmental, 2011, 103, 397-403.	20.2	63
43	Laser-induced luminescence associated with surface hydroxide groups in Al2O3. Kinetics and Catalysis, 2009, 50, 450-455.	1.0	16
44	Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Applied Catalysis B: Environmental, 2009, 90, 141-146.	20.2	45
45	Laser-induced luminescence of model Fe/Al2O3 and Cr/Al2O3 catalysts. Kinetics and Catalysis, 2008, 49, 291-298.	1.0	23
46	Production of nanomaterials by vaporizing ceramic targets irradiated by a moderate-power continuous-wave CO2 laser. Journal of Applied Mechanics and Technical Physics, 2007, 48, 292-302.	0.5	12
47	Interaction between 193-nm pulsed laser radiation and α-alumina. Technical Physics, 2006, 51, 514-518.	0.7	1
48	Putative mechanism of the sugar formation on prebiotic Earth initiated by UV-radiation. Advances in Space Research, 2005, 36, 214-219.	2.6	35
49	Luminescence of Al2O3 crystal modifications excited by the ArF excimer laser. Kinetics and Catalysis, 2005, 46, 260-268.	1.0	8
50	Laser-Induced Luminescence of Oxide Catalysts Excited by ArF Laser Radiation. Doklady Physical Chemistry, 2003, 392, 259-263.	0.9	0
51	Space chemical reactor of protoplanetary disk. Advances in Space Research, 2002, 30, 1461-1467.	2.6	14
52	Application of a charge-exchange process to optical diagnostics of the interaction of a laser-generated plasma with a dipole magnetic field. Journal of Applied Mechanics and Technical Physics, 1995, 36, 488-495.	0.5	2
53	New Trends in Automotive Exhaust Gas Purification Materials: Improvement of the Support against Stability of the Active Components. Materials Science Forum, 0, 950, 185-189.	0.3	3
54	The Features of a High-Temperature Synthesis of ZrO ₂ in a Core-Shell ZrO ₂ @C Structure. Materials Science Forum, 0, 950, 133-137.	0.3	1