De Sant'ana, H B

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1224846/de-santana-h-b-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68	1,144 citations	21	31
papers		h-index	g-index
76 ext. papers	1,336 ext. citations	3.8 avg, IF	4.52 L-index

#	Paper	IF	Citations
68	Electrochemical and theoretical investigation on the behavior of the Co ion in three eutectic solvents <i>Journal of Molecular Graphics and Modelling</i> , 2022 , 112, 108137	2.8	O
67	Thermodynamic Properties of Biodiesel and Petrodiesel Blends at High Pressure and High Temperature and a New Model for Density Prediction. <i>Journal of Chemical & Designation </i>	2.8	1
66	Cation effect on bis(trifluoromethylsulfonyl)imide-based ionic liquids with triethylsulfonium, 1,2-dimethyl-3-propylimidazolium, 1-methyl-1-propylpyrrolidinium, and 1-butyl-2,3-dimethylimidazolium density at high pressure. <i>Journal of Molecular Liquids</i> , 2022 , 354, 118	6 851	
65	Analysis of the behavior of Sn2+ and In3+ ions in DES and in water: A theoretical approach. <i>Journal of Molecular Liquids</i> , 2022 , 353, 118774	6	
64	Low viscosity lactam-based ionic liquids with carboxylate anions: Application in the separation of systems toluene/heptane, cyclohexene/cyclohexane, and phenol/water. <i>Journal of Molecular Liquids</i> , 2021 , 117720	6	
63	Density and Volumetric Behavior of Ternary CO2 + n-Decane + cis-Decalin (or + trans-Decalin) Mixtures at High Pressure and High Temperature. <i>Journal of Chemical & Deceing Data</i> , 2021 , 66, 1684-1693	2.8	2
62	Influence of asphaltenes and resins on water/model oil interfacial tension and emulsion behavior: Comparison of extracted fractions from crude oils with different asphaltene stability. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 109268	4.4	5
61	Experimental phase behavior and solubility parameter for crude oill-Imethane [TI=IB11.15B73.15IK] and crude oill-Imethane ICO2 mixtures [TI=IB43.15B83.15IK]. Fuel, 2021 , 288, 119675	7.1	2
60	Pressurized extraction of phycobiliproteins from Arthrospira platensis and evaluation of its effect on antioxidant and anticancer activities of these biomolecules. <i>Journal of Applied Phycology</i> , 2021 , 33, 929-938	3.2	3
59	Measurement of Fluid Phase Equilibria for High Gas Ratio Mixtures of Carbon Dioxide, Methane, and Brazilian Presalt Crude Oil. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 1356-1366	2.8	2
58	Effects of electrodeposition parameters on corrosion resistance of ZnSn coatings on carbon steel obtained from eutectic mixture based on choline chloride and ethylene glycol. <i>Journal of Alloys and Compounds</i> , 2021 , 886, 161159	5.7	1
57	Density and Volumetric Behavior of Binary CO2 + n-Decane and Ternary CO2 + n-Decane + Naphthalene Systems at High Pressure and High Temperature. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 3499-3509	2.8	5
56	Low viscosity lactam-based ionic liquids with carboxylate anions: Synthesis, characterization, thermophysical properties and mutual miscibility of ionic liquid with alcohol, water, and hydrocarbons. <i>Journal of Molecular Liquids</i> , 2020 , 313, 113586	6	3
55	Synthesis and application of castor oil maleate and castor oil maleate-styrene copolymers as demulsifier for water-in-oil emulsions. <i>Fuel</i> , 2020 , 269, 117429	7.1	15
54	Phase Behavior for Crude Oil and Methane Mixtures: Crude Oil Property Comparison. <i>Energy & Energy & E</i>	4.1	4
53	Viscosity and Density of Binary Mixtures of Toluene + Igepal (CO-520, CO-630, CO-720, and CA-720) at T = 293.15B33.15 K and Atmospheric Pressure. <i>Journal of Chemical & Chemical & Company Engineering Data</i> , 2020 , 65, 540-548	2.8	1
52	Study of Liquid Liquid and Liquid Liquid Liquid Liapor Equilibria for Crude Oil Mixtures with Carbon Dioxide and Methane Using Short-Wave Infrared Imaging: Experimental and Thermodynamic Modeling. Energy & Lamp; Fuels, 2020, 34, 14109-14123	4.1	5

51	Viscosity and Density of Binary Mixtures of Ethanol + Igepal (CO-520, CO-630, CO-720, and CA-720). Journal of Chemical & Delay Engineering Data, 2019 , 64, 594-602	2.8	6
50	Liquid Densities and Speed of Sound for Ionic Liquid (2-HEAA and 2-HDEAA) + Alcohol (1-Propanol and 2-Propanol) Mixtures at T = (293.15\(\mathbb{B}\)23.15 K) and Atmospheric Pressure. <i>Journal of Chemical & Amp; Engineering Data</i> , 2019 , 64, 3316-3322	2.8	6
49	Effect of Temperature on Asphaltenes Precipitation: Direct and Indirect Analyses and Phase Equilibrium Study. <i>Energy & Discourt Study</i> . <i>Energy & Discourt Study</i> . 2019, 33, 6921-6928	4.1	8
48	Experimental study of the phase behavior of methane and crude oil mixtures. <i>Fuel</i> , 2019 , 255, 115850	7.1	7
47	Liquid Diquid Equilibrium Data for Ternary Systems Containing Alkanes (n-Pentane, n-Hexane, n-Heptane, and n-Octane) + Alcohol (Methanol and Ethanol) + Protic Ionic Liquid (2-HEAF). <i>Journal of Chemical & Data</i> , 2019 , 64, 5167-5173	2.8	1
46	Synthesis and application of additives based on cardanol as demulsifier for water-in-oil emulsions. <i>Fuel</i> , 2019 , 245, 21-28	7.1	20
45	Addition of Non-endogenous Paraffins in Brazilian Crude Oils and Their Effects on Emulsion Stability and Interfacial Properties. <i>Energy & Energy &</i>	4.1	3
44	Paraffin effects on the stability and precipitation of crude oil asphaltenes: Experimental onset determination and phase behavior approach. <i>Fluid Phase Equilibria</i> , 2018 , 474, 116-125	2.5	15
43	Estimation of Physical Constants of Biodiesel-Related Fatty Acid Alkyl Esters: Normal Boiling Point, Critical Temperature, Critical Pressure, and Acentric Factor. <i>Industrial & Discrete Managery Engineering Chemistry Research</i> , 2018 , 57, 8552-8565	3.9	8
42	Pore-expanded SBA-15 for the immobilization of a recombinant Candida antarctica lipase B: Application in esterification and hydrolysis as model reactions. <i>Chemical Engineering Research and Design</i> , 2018 , 129, 12-24	5.5	25
41	DENSITY, VISCOSITY AND EXCESS PROPERTIES OF BINARY MIXTURES OF PROTIC IONIC LIQUID (2-HDEAF, 2-HDEAA) + WATER AT DIFFERENT TEMPERATURES. <i>Brazilian Journal of Chemical Engineering</i> , 2018 , 35, 383-394	1.7	8
40	Estimation of Vapor Pressures and Enthalpies of Vaporization of Biodiesel-Related Fatty Acid Alkyl Esters. Part 1. Evaluation of Group Contribution and Corresponding States Methods. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 2298-2309	3.9	9
39	Immobilization of CALB on activated chitosan: Application to enzymatic synthesis in supercritical and near-critical carbon dioxide. <i>Biotechnology Reports (Amsterdam, Netherlands)</i> , 2017 , 14, 16-26	5.3	63
38	Estimation of Vapor Pressures and Enthalpies of Vaporization of Biodiesel-Related Fatty Acid Alkyl Esters. Part 2. New Parameters for Classic Vapor Pressure Correlations. <i>Industrial & amp; Engineering Chemistry Research</i> , 2017 , 56, 8349-8357	3.9	4
37	Effects of nanoclay and nanocomposites on bitumen rheological properties. <i>Construction and Building Materials</i> , 2016 , 125, 873-883	6.7	35
36	Liquid Diquid Equilibrium for Cottonseed Biodiesel + Water + Alcohol (Methanol/Ethanol) Systems at (293.15 and 313.15) K: Experimental Data and Thermodynamic Modeling. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 707-713	2.8	6
35	Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. <i>Catalysis Today</i> , 2015 , 255, 10-15	5.3	59
34	Evaluation of Optimal Methods for Critical Properties and Acentric Factor of Biodiesel Compounds with Their Application on SoaveRedlichEwong and PengRobinson Equations of State. <i>Journal of Chemical & Application Pata</i> 2015, 60, 3358-3381	2.8	10

33	Measurement of phase equilibria data for the extraction of toluene from alkane using different solvents. <i>Fluid Phase Equilibria</i> , 2015 , 404, 49-54	2.5	12
32	Density and Viscosity of Binary Systems Containing (Linseed or Corn) Oil, (Linseed or Corn) Biodiesel and Diesel. <i>Journal of Chemical & Diesel (Linseed or Corn)</i>	2.8	11
31	Removal of aromatic hydrocarbons from hydrocarbon mixture using glycols at 303.15 K and 333.15 K and atmospheric pressure: Experimental and calculated data by NRTL and UNIQUAC models. <i>Fluid Phase Equilibria</i> , 2015 , 387, 135-142	2.5	9
30	Optimization of the methylic biodiesel purification process by intermediate of liquid[Iquid equilibrium data for ternary systems containing methanol+water+(soybean, corn or brown shell of coconut) biodiesel. Fluid Phase Equilibria, 2014, 361, 30-36	2.5	11
29	Development of a New Group Contribution Method Based on GCVOL Model for the Estimation of Pure Ionic Liquid Density over a Wide Range of Temperature and Pressure. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 9506-9512	3.9	12
28	Improving the catalytic properties of immobilized Lecitase via physical coating with ionic polymers. <i>Enzyme and Microbial Technology</i> , 2014 , 60, 1-8	3.8	47
27	Density, Viscosities, and Excess Properties for Binary Mixtures of Sulfolane + Alcohols and Sulfolane + Glycols at Different Temperatures. <i>Journal of Chemical & Description of Chemical & Data</i> , 2014 , 59, 2196-2206	2.8	20
26	Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. <i>Process Biochemistry</i> , 2014 , 49, 1511-1515	4.8	43
25	Experimental density data and excess molar volumes of coconut biodiesel + n-hexadecane and coconut biodiesel + diesel at different temperatures. <i>Brazilian Journal of Chemical Engineering</i> , 2014 , 31, 543-551	1.7	7
24	Performance of a biosurfactant produced by Bacillus subtilis LAMI005 on the formation of oil / biosurfactant / water emulsion: study of the phase behaviour of emulsified systems. <i>Brazilian Journal of Chemical Engineering</i> , 2014 , 31, 613-623	1.7	32
23	Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. <i>Brazilian Archives of Biology and Technology</i> , 2014 , 57, 295-301	1.8	20
22	Evaluation of optimal activity coefficient models for modeling and simulation of liquid liquid equilibrium of biodiesel + glycerol + alcohol systems. <i>Fuel</i> , 2014 , 125, 57-65	7.1	23
21	Abdiesel: Liquidliquid equilibrium and volumetric transport properties. Fuel, 2014 , 119, 292-300	7.1	7
20	Austenitic and ferritic stainless steel dissimilar weld metal evaluation for the applications as-coating in the petroleum processing equipment. <i>Materials & Design</i> , 2013 , 47, 1-8		32
19	Liquid Liquid Equilibrium for the Glycerol + Alcohol + Coconut Biodiesel System at Different Temperatures and Atmospheric Pressure. <i>Journal of Chemical & Data, Engineering Data, 2012, 57, 3557-</i>	3562	17
18	Viscosities and Densities of Ternary Blends of Diesel + Soybean Biodiesel + Soybean Oil. <i>Journal of Chemical & Chemical </i>	2.8	14
17	Viscosities and viscosity deviations of binary mixtures of biodiesel + petrodiesel (or n-hexadecane) at different temperatures. <i>Brazilian Journal of Chemical Engineering</i> , 2012 , 29, 653-664	1.7	14
16	Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. <i>Bioprocess and Biosystems Engineering</i> , 2012 , 35, 897-906	3.7	55

LIST OF PUBLICATIONS

15	Liquid II quid equilibria of systems containing cottonseed biodiesel + glycerol + ethanol at 293.15, 313.15 and 333.15 K. <i>Fluid Phase Equilibria</i> , 2012 , 318, 51-55	2.5	26
14	Development of a new model for biodiesel viscosity prediction based on the principle of corresponding state. <i>Fuel</i> , 2012 , 92, 250-257	7.1	22
13	Density, Excess Volumes, and Partial Volumes of Binary Mixtures of Soybean Biodiesel + Diesel and Soybean Biodiesel + n-Hexadecane at Different Temperatures and Atmospheric Pressure. <i>Journal of Chemical & Diesel and State of Chemical & Diesel and Diesel and</i>	2.8	20
12	Liquid Diquid Equilibrium for Ternary Mixtures of Biodiesel (Soybean or Sunflower) + Glycerol + Ethanol at Different Temperatures. <i>Journal of Chemical & Different Data</i> , 2011 , 56, 4061-4067	2.8	33
11	Excess Volumes and Deviations of Viscosities of Binary Blends of Sunflower Biodiesel + Diesel and Fish Oil Biodiesel + Diesel at Various Temperatures. <i>Journal of Chemical & Diesel & Diesel at Various Temperatures</i> . <i>Journal of Chemical & Diesel & Diesel and Data</i> , 2011 , 56, 3061-3067	2.8	26
10	Densities and Viscosities of Binary Mixtures of Babassu Biodiesel + Cotton Seed or Soybean Biodiesel at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> (2010, 55, 5305-5310)	2.8	60
9	Viscosities and Densities of Binary Mixtures of Coconut + Colza and Coconut + Soybean Biodiesel at Various Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 3909-3914	2.8	53
8	Microstructure, hardness and petroleum corrosion evaluation of 316L/AWS E309MoL-16 weld metal. <i>Materials Characterization</i> , 2009 , 60, 346-352	3.9	37
7	Evaluation of AISI 316L stainless steel welded plates in heavy petroleum environment. <i>Materials & Design</i> , 2009 , 30, 1581-1587		29
6	Viscosity and Density of Binary Mixtures of Ethyl Alcohol with n-Alkanes (C6, C8, and C10). <i>Journal of Chemical & Data</i> , 2009 , 54, 2957-2963	2.8	29
5	High-temperature hydrogen sulfide corrosion on the heat-affected zone of the AISI 444 stainless steel caused by Venezuelan heavy petroleum. <i>Journal of Petroleum Science and Engineering</i> , 2007 , 59, 219-225	4.4	21
4	Particle size distribution modeling in the object oriented simulation of gasBolid flow. <i>Chemical Engineering Journal</i> , 2006 , 122, 141-147	14.7	1
3	Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel. <i>Materials Research</i> , 2006 , 9, 137-142	1.5	10
2	Evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties. <i>Fluid Phase Equilibria</i> , 1999 , 154, 193-204	2.5	39
1	Phase Behavior Investigation of a Live Presalt Crude Oil from Short-Wave Infrared Observation, Acoustic Wave Sensing, and Equation of State Modeling. <i>Energy & District Communication</i> 2015.	4.1	1