
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single amino acid residue in bank vole prion protein drives permissiveness to Nor98/atypical scrapie and the emergence of multiple strain variants. PLoS Pathogens, 2022, 18, e1010646.	4.7	7
2	Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt–Jakob disease prions is strongly seed and substrate dependent. Scientific Reports, 2021, 11, 4058.	3.3	10
3	Classical scrapie in small ruminants is caused by at least four different prion strains. Veterinary Research, 2021, 52, 57.	3.0	6
4	Stability of BSE infectivity towards heat treatment even after proteolytic removal of prion protein. Veterinary Research, 2021, 52, 59.	3.0	2
5	Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathogens, 2021, 17, e1009748.	4.7	30
6	Chronic wasting disease in Europe: new strains on the horizon. Acta Veterinaria Scandinavica, 2021, 63, 48.	1.6	37
7	Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Scientific Reports, 2020, 10, 19.	3.3	22
8	Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31417-31426.	7.1	57
9	Isolation of infectious, non-fibrillar and oligomeric prions from a genetic prion disease. Brain, 2020, 143, 1512-1524.	7.6	21
10	Development of a new largely scalable in vitro prion propagation method for the production of infectious recombinant prions for high resolution structural studies. PLoS Pathogens, 2019, 15, e1008117.	4.7	28
11	A Single Amino Acid Substitution, Found in Mammals with Low Susceptibility to Prion Diseases, Delays Propagation of Two Prion Strains in Highly Susceptible Transgenic Mouse Models. Molecular Neurobiology, 2019, 56, 6501-6511.	4.0	13
12	Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods. Veterinary Research, 2019, 50, 97.	3.0	11
13	Update on chronic wasting disease (CWD) III. EFSA Journal, 2019, 17, e05863.	1.8	28
14	Variable Protease-Sensitive Prionopathy Transmission to Bank Voles. Emerging Infectious Diseases, 2019, 25, 73-81.	4.3	25
15	Title is missing!. , 2019, 15, e1008117.		0
16	Title is missing!. , 2019, 15, e1008117.		0
17	Title is missing!. , 2019, 15, e1008117.		0
18	Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathologica, 2018, 135, 179-199.	7.7	56

#	Article	IF	CITATIONS
19	Novel Type of Chronic Wasting Disease Detected in Moose (<i>Alces alces</i>), Norway. Emerging Infectious Diseases, 2018, 24, 2210-2218.	4.3	106
20	Prion Disease in Dromedary Camels, Algeria. Emerging Infectious Diseases, 2018, 24, 1029-1036.	4.3	88
21	Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis. PLoS Pathogens, 2018, 14, e1006797.	4.7	24
22	EU-approved rapid tests might underestimate bovine spongiform encephalopathy infection in goats. Journal of Veterinary Diagnostic Investigation, 2017, 29, 232-236.	1.1	3
23	Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease. Journal of Virology, 2017, 91, .	3.4	14
24	Atypical Creutzfeldt-Jakob disease with PrP-amyloid plaques in white matter: molecular characterization and transmission to bank voles show the M1 strain signature. Acta Neuropathologica Communications, 2017, 5, 87.	5.2	25
25	An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS ONE, 2017, 12, e0182589.	2.5	19
26	A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Scientific Reports, 2016, 6, 23180.	3.3	34
27	Transmissibility of Gerstmann–StrÃ ¤ ssler–Scheinker syndrome in rodent models: New insights into the molecular underpinnings of prion infectivity. Prion, 2016, 10, 421-433.	1.8	14
28	PrP C Governs Susceptibility to Prion Strains in Bank Vole, While Other Host Factors Modulate Strain Features. Journal of Virology, 2016, 90, 10660-10669.	3.4	37
29	Gerstmann-Strässler-Scheinker disease subtypes efficiently transmit in bank voles as genuine prion diseases. Scientific Reports, 2016, 6, 20443.	3.3	54
30	Isolation of a Defective Prion Mutant from Natural Scrapie. PLoS Pathogens, 2016, 12, e1006016.	4.7	14
31	Genetic and Pathological Follow-Up Study of Goats Experimentally and Naturally Exposed to a Sheep Scrapie Isolate. Journal of Virology, 2015, 89, 10044-10052.	3.4	17
32	Further characterisation of transmissible spongiform encephalopathy phenotypes after inoculation of cattle with two temporally separated sources of sheep scrapie from Great Britain. BMC Research Notes, 2015, 8, 312.	1.4	17
33	Correlation between Infectivity and Disease Associated Prion Protein in the Nervous System and Selected Edible Tissues of Naturally Affected Scrapie Sheep. PLoS ONE, 2015, 10, e0122785.	2.5	11
34	Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains. PLoS Pathogens, 2015, 11, e1004983.	4.7	141
35	In vitro replication highlights the mutability of prions. Prion, 2014, 8, 154-160.	1.8	9
36	L-Type Bovine Spongiform Encephalopathy in Genetically Susceptible and Resistant Sheep: Changes in Prion Strain or Phenotypic Plasticity of the Disease-Associated Prion Protein?. Journal of Infectious Diseases, 2014, 209, 950-959.	4.0	14

#	Article	IF	CITATIONS
37	Prion disease tempo determined by host-dependent substrate reduction. Journal of Clinical Investigation, 2014, 124, 847-858.	8.2	59
38	Neurochemistry of myenteric plexus neurons of bank vole (Myodes glareolus) ileum. Research in Veterinary Science, 2013, 95, 846-853.	1.9	7
39	Chronic Wasting Disease in Bank Voles: Characterisation of the Shortest Incubation Time Model for Prion Diseases. PLoS Pathogens, 2013, 9, e1003219.	4.7	88
40	Small Ruminant Nor98 Prions Share Biochemical Features with Human Gerstmann-Strässler-Scheinker Disease and Variably Protease-Sensitive Prionopathy. PLoS ONE, 2013, 8, e66405.	2.5	37
41	Biochemical Characterization of Prion Strains in Bank Voles. Pathogens, 2013, 2, 446-456.	2.8	20
42	Effect of PrP genotype and route of inoculation on the ability of discriminatory Western blot to distinguish scrapie from sheep bovine spongiform encephalopathy. Journal of General Virology, 2012, 93, 450-455.	2.9	11
43	The Mouse Model for Scrapie: Inoculation, Clinical Scoring, and Histopathological Techniques. Methods in Molecular Biology, 2012, 849, 453-471.	0.9	4
44	Comparative performance of three TSE rapid tests for surveillance in healthy sheep affected by scrapie. Journal of Virological Methods, 2011, 173, 161-168.	2.1	6
45	PRNP genetic variability and molecular typing of natural goat scrapie isolates in a high number of infected flocks. Veterinary Research, 2011, 42, 104.	3.0	37
46	Molecular Discrimination of Sheep Bovine Spongiform Encephalopathy from Scrapie. Emerging Infectious Diseases, 2011, 17, 695-698.	4.3	19
47	Assessment of the Genetic Susceptibility of Sheep to Scrapie by Protein Misfolding Cyclic Amplification and Comparison with Experimental Scrapie Transmission Studies. Journal of Virology, 2011, 85, 8386-8392.	3.4	33
48	Ultra-Efficient PrPSc Amplification Highlights Potentialities and Pitfalls of PMCA Technology. PLoS Pathogens, 2011, 7, e1002370.	4.7	63
49	A New Method for the Characterization of Strain-Specific Conformational Stability of Protease-Sensitive and Protease-Resistant PrPSc. PLoS ONE, 2010, 5, e12723.	2.5	42
50	Co-existence of classical scrapie and Nor98 in a sheep from an Italian outbreak. Research in Veterinary Science, 2010, 88, 478-485.	1.9	38
51	Oral pravastatin prolongs survival time of scrapie-infected mice. Journal of General Virology, 2009, 90, 1775-1780.	2.9	16
52	Magnetic fields produced by power lines do not affect growth, serum melatonin, leukocytes and fledging success in wild kestrels. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 372-376.	2.6	7
53	Protective effect of the AT137RQ and ARQK176PrP allele against classical scrapie in Sarda breed sheep. Veterinary Research, 2009, 40, 19.	3.0	41
54	The bank vole (Myodes glareolus) as a sensitive bioassay for sheep scrapie. Journal of General Virology, 2008, 89, 2975-2985.	2.9	73

#	Article	IF	CITATIONS
55	Prion Protein Amino Acid Determinants of Differential Susceptibility and Molecular Feature of Prion Strains in Mice and Voles. PLoS Pathogens, 2008, 4, e1000113.	4.7	73
56	Histidine at codon 154 of the prion protein gene is a risk factor for Nor98 scrapie in goats. Journal of General Virology, 2008, 89, 3173-3176.	2.9	58
57	A cell line infectible by prion strains from different species. Journal of General Virology, 2008, 89, 341-347.	2.9	69
58	PrP Sc in Salivary Glands of Scrapie-Affected Sheep. Journal of Virology, 2007, 81, 4872-4876.	3.4	54
59	Prion Protein Alleles Showing a Protective Effect on the Susceptibility of Sheep to Scrapie and Bovine Spongiform Encephalopathy. Journal of Virology, 2007, 81, 7306-7309.	3.4	49
60	Novel Prion Protein Conformation and Glycotype in Creutzfeldt-Jakob Disease. Archives of Neurology, 2007, 64, 595.	4.5	36
61	Quantitative profiling of the pathological prion protein allotypes in bank voles by liquid chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849, 302-306.	2.3	16
62	Intracerebral administration of interleukin-12 (IL-12) and IL-18 modifies the course of mouse scrapie. BMC Veterinary Research, 2006, 2, 37.	1.9	6
63	Efficient Transmission and Characterization of Creutzfeldt–Jakob Disease Strains in Bank Voles. PLoS Pathogens, 2006, 2, e12.	4.7	201
64	Identification of an allelic variant of the goat PrP gene associated with resistance to scrapie. Journal of General Virology, 2006, 87, 1395-1402.	2.9	105
65	Conversion Efficiency of Bank Vole Prion Protein in Vitro Is Determined by Residues 155 and 170, but Does Not Correlate with the High Susceptibility of Bank Voles to Sheep Scrapie in Vivo. Journal of Biological Chemistry, 2006, 281, 9373-9384.	3.4	50
66	Identification of the pathological prion protein allotypes in scrapie-infected heterozygous bank voles (Clethrionomys glareolus) by high-performance liquid chromatography–mass spectrometry. Journal of Chromatography A, 2005, 1081, 122-126.	3.7	41
67	Diagnosis and PrP genotype target of scrapie in clinically healthy sheep of Massese breed in the framework of a scrapie eradication programme. Archives of Virology, 2005, 150, 1959-1976.	2.1	14
68	Animal Transmissible Spongiform Encephalopathies and Genetics. Veterinary Research Communications, 2003, 27, 31-38.	1.6	40
69	Molecular Analysis of Cases of Italian Sheep Scrapie and Comparison with Cases of Bovine Spongiform Encephalopathy (BSE) and Experimental BSE in Sheep. Journal of Clinical Microbiology, 2003, 41, 4127-4133.	3.9	55
70	Early behavioural changes in mice infected with BSE and scrapie: automated home cage monitoring reveals prion strain differences. European Journal of Neuroscience, 2002, 16, 735-742.	2.6	67
71	2-N-Acylaminoalkylindoles:  Design and Quantitative Structureâ~'Activity Relationship Studies Leading to MT2-Selective Melatonin Antagonists. Journal of Medicinal Chemistry, 2001, 44, 2900-2912.	6.4	56
72	PrP genotype in Sarda breed sheep and its relevance to scrapie. Archives of Virology, 2001, 146, 2029-2037.	2.1	55

#	Article	IF	CITATIONS
73	Synthesis, pharmacological characterization and QSAR studies on 2-substituted indole melatonin receptor ligands. Bioorganic and Medicinal Chemistry, 2001, 9, 1045-1057.	3.0	45
74	A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties. Journal of Pineal Research, 2000, 29, 234-240.	7.4	33
75	Ligand efficacy and potency at recombinant human MT ₂ melatonin receptors: evidence for agonist activity of some mt ₁ â€antagonists. British Journal of Pharmacology, 1999, 127, 1288-1294.	5.4	75
76	Methods for the Evaluation of Drug Action at the Human Melatonin Receptor Subtypes. NeuroSignals, 1999, 8, 32-40.	0.9	10
77	Pharmacological characterization of the human melatonin Mel _{1a} receptor following stable transfection into NIH3T3 cells. British Journal of Pharmacology, 1998, 124, 485-492.	5.4	47
78	2-[N-Acylamino(C1â^'C3)alkyl]indoles as MT1Melatonin Receptor Partial Agonists, Antagonists, and Putative Inverse Agonists. Journal of Medicinal Chemistry, 1998, 41, 3624-3634.	6.4	101
79	Melatonin Receptor Ligands:Â Synthesis of New Melatonin Derivatives and Comprehensive Comparative Molecular Field Analysis (CoMFA) Study. Journal of Medicinal Chemistry, 1998, 41, 3831-3844.	6.4	71
80	1-(2-Alkanamidoethyl)-6-methoxyindole Derivatives:Â A New Class of Potent Indole Melatonin Analogues. Journal of Medicinal Chemistry, 1997, 40, 2003-2010.	6.4	50
81	Conformationally Restrained Melatonin Analogues:Â Synthesis, Binding Affinity for the Melatonin Receptor, Evaluation of the Biological Activity, and Molecular Modeling Study. Journal of Medicinal Chemistry, 1997, 40, 1990-2002.	6.4	73
82	The melatonin receptor in the human brain: cloning experiments and distribution studies. Molecular Brain Research, 1996, 39, 117-126.	2.3	154
83	Distribution and characterization of the melatonin receptors in the hypothalamus and pituitary gland of three domestic ungulates. Journal of Pineal Research, 1995, 18, 207-216.	7.4	17
84	2-[1251]Iodomelatonin binding sites in the bovine hippocampus are not sensitive to guanine nucleotides. Neuroscience Letters, 1995, 194, 113-116.	2.1	17