
## Shinji Kanda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223803/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF               | CITATIONS     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 1  | Identification of KiSS-1 Product Kisspeptin and Steroid-Sensitive Sexually Dimorphic Kisspeptin<br>Neurons in Medaka (Oryzias latipes). Endocrinology, 2008, 149, 2467-2476.                                                                        | 2.8              | 209           |
| 2  | Possible Role of Oestrogen in Pubertal Increase of <i>Kiss1</i> /Kisspeptin Expression in Discrete<br>Hypothalamic Areas of Female Rats. Journal of Neuroendocrinology, 2009, 21, 527-537.                                                          | 2.6              | 110           |
| 3  | Evolution of the Hypothalamic-Pituitary-Gonadal Axis Regulation in Vertebrates Revealed by Knockout<br>Medaka. Endocrinology, 2016, 157, 3994-4002.                                                                                                 | 2.8              | 107           |
| 4  | Functional and evolutionary insights into vertebrate kisspeptin systems from studies of fish brain.<br>Journal of Fish Biology, 2010, 76, 161-182.                                                                                                  | 1.6              | 95            |
| 5  | Hypothalamic Kiss1 but Not Kiss2 Neurons Are Involved in Estrogen Feedback in Medaka (Oryzias) Tj ETQq1 1 0.                                                                                                                                        | 784314 rg<br>2.8 | ;BT_/Overlock |
| 6  | Neuroanatomical Evidence That Kisspeptin Directly Regulates Isotocin and Vasotocin Neurons. PLoS<br>ONE, 2013, 8, e62776.                                                                                                                           | 2.5              | 85            |
| 7  | Evolutionally Conserved Function of Kisspeptin Neuronal System Is Nonreproductive Regulation as Revealed by Nonmammalian Study. Endocrinology, 2018, 159, 163-183.                                                                                  | 2.8              | 83            |
| 8  | Time-of-Day-Dependent Changes in GnRH1 Neuronal Activities and Gonadotropin mRNA Expression in a<br>Daily Spawning Fish, Medaka. Endocrinology, 2012, 153, 3394-3404.                                                                               | 2.8              | 65            |
| 9  | Steroid Sensitive <i>kiss2</i> Neurones in the Goldfish: Evolutionary Insights into the Duplicate<br>Kisspeptin Geneâ€Expressing Neurones. Journal of Neuroendocrinology, 2012, 24, 897-906.                                                        | 2.6              | 59            |
| 10 | Sex Differences in Aromatase Gene Expression in the Medaka Brain. Journal of Neuroendocrinology, 2011, 23, 412-423.                                                                                                                                 | 2.6              | 56            |
| 11 | Evolution of the regulatory mechanisms for the hypothalamic-pituitary-gonadal axis in<br>vertebrates–hypothesis from a comparative view. General and Comparative Endocrinology, 2019, 284,<br>113075.                                               | 1.8              | 52            |
| 12 | Differential regulation of the luteinizing hormone genes in teleosts and tetrapods due to their<br>distinct genomic environments – Insights into gonadotropin beta subunit evolution. General and<br>Comparative Endocrinology, 2011, 173, 253-258. | 1.8              | 50            |
| 13 | Female-specific target sites for both oestrogen and androgen in the teleost brain. Proceedings of the<br>Royal Society B: Biological Sciences, 2012, 279, 5014-5023.                                                                                | 2.6              | 50            |
| 14 | Whole Brain-Pituitary In Vitro Preparation of the Transgenic Medaka (Oryzias latipes) as a Tool for<br>Analyzing the Differential Regulatory Mechanisms of LH and FSH Release. Endocrinology, 2014, 155,<br>536-547.                                | 2.8              | 49            |
| 15 | Gene knockout analysis reveals essentiality of estrogen receptor β1 (Esr2a) for female reproduction in<br>medaka. Scientific Reports, 2019, 9, 8868.                                                                                                | 3.3              | 46            |
| 16 | Evolutionary Insights into the Steroid Sensitive kiss1 and kiss2 Neurons in the Vertebrate Brain.<br>Frontiers in Endocrinology, 2012, 3, 28.                                                                                                       | 3.5              | 36            |
| 17 | Regular Pacemaker Activity Characterizes Gonadotropin-Releasing Hormone 2 Neurons Recorded from<br>Green Fluorescent Protein-Transgenic Medaka. Endocrinology, 2010, 151, 695-701.                                                                  | 2.8              | 34            |
| 18 | Anatomical distribution of sex steroid hormone receptors in the brain of female medaka. Journal of<br>Comparative Neurology, 2013, 521, 1760-1780.                                                                                                  | 1.6              | 32            |

Shinji Kanda

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Central distribution of kiss2 neurons and peri-pubertal changes in their expression in the brain of<br>male and female red seabream Pagrus major. General and Comparative Endocrinology, 2012, 175, 432-442. | 1.8 | 30        |
| 20 | TMC4 is a novel chloride channel involved in high-concentration salt taste sensation. Journal of Physiological Sciences, 2021, 71, 23.                                                                       | 2.1 | 27        |
| 21 | Biological activities of single-chain goldfish follicle-stimulating hormone and luteinizing hormone.<br>Aquaculture, 2008, 274, 408-415.                                                                     | 3.5 | 25        |
| 22 | Female-Specific Glucose Sensitivity of GnRH1 Neurons Leads to Sexually Dimorphic Inhibition of Reproduction in Medaka. Endocrinology, 2016, 157, 4318-4329.                                                  | 2.8 | 21        |
| 23 | Kiss1 Neurons Drastically Change Their Firing Activity in Accordance With the Reproductive State:<br>Insights From a Seasonal Breeder. Endocrinology, 2014, 155, 4868-4880.                                  | 2.8 | 20        |
| 24 | Examination of methods for manipulating serum 17β-Estradiol (E2) levels by analysis of blood E2<br>concentration in medaka (Oryzias latipes). General and Comparative Endocrinology, 2020, 285, 113272.      | 1.8 | 20        |
| 25 | Structure, Synthesis, and Phylogeny of Kisspeptin and its Receptor. Advances in Experimental Medicine<br>and Biology, 2013, 784, 9-26.                                                                       | 1.6 | 18        |
| 26 | Sexually Dimorphic Neuropeptide B Neurons in Medaka Exhibit Activated Cellular Phenotypes<br>Dependent on Estrogen. Endocrinology, 2019, 160, 827-839.                                                       | 2.8 | 17        |
| 27 | Expression of Vesicular Glutamate Transporter-2.1 in Medaka Terminal Nerve Gonadotrophin-Releasing<br>Hormone Neurones. Journal of Neuroendocrinology, 2011, 23, 570-576.                                    | 2.6 | 13        |
| 28 | Morphological Analysis of the Axonal Projections of EGFP-Labeled Esr1-Expressing Neurons in<br>Transgenic Female Medaka. Endocrinology, 2018, 159, 1228-1241.                                                | 2.8 | 8         |
| 29 | Gonadectomy and Blood Sampling Procedures in the Small Size Teleost Model Japanese Medaka<br>( <em>Oryzias latipes</em> ). Journal of Visualized Experiments, 2020, , .                                      | 0.3 | 7         |
| 30 | Co-existing Neuropeptide FF and Gonadotropin-Releasing Hormone 3 Coordinately Modulate Male<br>Sexual Behavior. Endocrinology, 2022, 163, .                                                                  | 2.8 | 7         |
| 31 | Establishment of open-source semi-automated behavioral analysis system and quantification of the difference of sexual motivation between laboratory and wild strains. Scientific Reports, 2021, 11, 10894.   | 3.3 | 6         |
| 32 | Transmembrane channel-like 4 is involved in pH and temperature-dependent modulation of salty taste.<br>Bioscience, Biotechnology and Biochemistry, 2021, 85, 2295-2299.                                      | 1.3 | 6         |
| 33 | Roles of the CIC chloride channel CLH-1 in food-associated salt chemotaxis behavior of C. elegans.<br>ELife, 2021, 10, .                                                                                     | 6.0 | 4         |
| 34 | Integrated analyses using medaka as a powerful model animal toward understanding various aspects of reproductive regulation. , 2022, , 215-243.                                                              |     | 4         |
| 35 | Divalent metal transporter-related protein restricts animals to marine habitats. Communications<br>Biology, 2021, 4, 463.                                                                                    | 4.4 | 2         |
| 36 | Medaka as a model teleost: characteristics and approaches of genetic modification. , 2022, , 185-213.                                                                                                        |     | 2         |

Shinji Kanda

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Small Teleosts Provide Hints Toward Understanding the Evolution of the Central Regulatory<br>Mechanisms of Reproduction. , 2018, , 99-111.                                                    |     | 2         |
| 38 | Kisspeptin. , 2021, , 21-23.                                                                                                                                                                  |     | 1         |
| 39 | Estrogen upregulates the firing activity of hypothalamic gonadotropinâ€releasing hormone (GnRH1)<br>neurons in the evening in female medaka. Journal of Neuroendocrinology, 2022, 34, e13101. | 2.6 | 1         |
| 40 | 1. Neuropeptides controlling reproductive function. Nippon Suisan Gakkaishi, 2009, 75, 856-857.                                                                                               | 0.1 | 0         |
| 41 | Kisspeptin. , 2016, , 10-e1B-2.                                                                                                                                                               |     | 0         |
| 42 | Open-source semi-automated behavioral analysis system with Raspberry Pi and behavioral annotation macro. Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 2021, 38, 87-94.    | 0.0 | 0         |