
Thomas A A Adcock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Harmonic-induced wave breaking due to abrupt depth transitions: An experimental and numerical study. Coastal Engineering, 2022, 171, 104041.	4.0	9
2	Estimating ocean wave directional spreading using wave following buoys: a comparison of experimental buoy and gauge data. Journal of Ocean Engineering and Marine Energy, 2022, 8, 83-97.	1.7	3
3	Wave breaking and jet formation on axisymmetric surface gravity waves. Journal of Fluid Mechanics, 2022, 935, .	3.4	5
4	Estimating space–time wave statistics using a sequential sampling method and Gaussian process regression. Applied Ocean Research, 2022, 122, 103127.	4.1	3
5	A reduced order model for space–time wave statistics using probabilistic decomposition–synthesis method. Ocean Engineering, 2022, 259, 111860.	4.3	3
6	The Fluid Mechanics of Tidal Stream Energy Conversion. Annual Review of Fluid Mechanics, 2021, 53, 287-310.	25.0	39
7	Spatial evolution of the kurtosis of steep unidirectional random waves. Journal of Fluid Mechanics, 2021, 908, .	3.4	16
8	Rapid spectral evolution of steep surface wave groups with directional spreading. Journal of Fluid Mechanics, 2021, 907, .	3.4	8
9	Surface wavepackets subject to an abrupt depth change. Part 2. Experimental analysis. Journal of Fluid Mechanics, 2021, 915, .	3.4	19
10	Surface wavepackets subject to an abrupt depth change. Part 1. Second-order theory. Journal of Fluid Mechanics, 2021, 915, .	3.4	26
11	Anomalous wave statistics following sudden depth transitions: application of an alternative Boussinesq-type formulation. Journal of Ocean Engineering and Marine Energy, 2021, 7, 145-155.	1.7	0
12	Why rogue waves occur atop abrupt depth transitions. Journal of Fluid Mechanics, 2021, 919, .	3.4	28
13	The influence of finite depth on the evolution of extreme wave statistics in numerical wave tanks. Coastal Engineering, 2021, 166, 103870.	4.0	9
14	Fractal-like actuator disc theory for optimal energy extraction. Journal of Fluid Mechanics, 2021, 927,	3.4	6
15	Data driven analysis on the extreme wave statistics over an area. Applied Ocean Research, 2021, 115, 102809.	4.1	4
16	A Note on the Effects of Local Blockage and Dynamic Tuning on Tidal Turbine Performance. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	1.2	0
17	Tidal energy resource in Larantuka Strait, Indonesia. Proceedings of Institution of Civil Engineers: Energy, 2020, 173, 81-92.	0.6	9
18	Modification of tidal resonance in the Severn Estuary by a barrage and lagoon. Journal of Ocean Engineering and Marine Energy, 2020, 6, 171-181.	1.7	3

THOMAS A A ADCOCK

#	Article	IF	CITATIONS
19	Experimental investigation of higher harmonic wave loads and moments on a vertical cylinder by a phase-manipulation method. Coastal Engineering, 2020, 160, 103747.	4.0	17
20	The effect of bed roughness uncertainty on tidal stream power estimates for the Pentland Firth. Royal Society Open Science, 2020, 7, 191127.	2.4	4
21	Fully nonlinear simulations of unidirectional extreme waves provoked by strong depth transitions: The effect of slope. Physical Review Fluids, 2020, 5, .	2.5	34
22	Nonlinear Evolution of a Steep, Focusing Wave Group in Deep Water Simulated With oceanwave3d. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	1.2	10
23	Combined power and thrust capping in the design of tidal turbine farms. Renewable Energy, 2019, 133, 1247-1256.	8.9	2
24	Field measurement of nonlinear changes to large gravity wave groups. Journal of Fluid Mechanics, 2019, 873, 1158-1178.	3.4	5
25	The impact of a tidal barrage on coastal flooding due to storm surge in the Severn Estuary. Journal of Ocean Engineering and Marine Energy, 2019, 5, 217-226.	1.7	5
26	A Note on the Second-Order Contribution to Extreme Waves Generated During Hurricanes. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	1.2	3
27	Foundations of offshore wind turbines: A review. Renewable and Sustainable Energy Reviews, 2019, 104, 379-393.	16.4	270
28	A note on the tuning of tidal turbines in channels. Journal of Ocean Engineering and Marine Energy, 2019, 5, 85-98.	1.7	5
29	Spatiotemporal Prediction of Tidal Currents Using Gaussian Processes. Journal of Geophysical Research: Oceans, 2019, 124, 2697-2715.	2.6	16
30	On the arrangement of tidal turbines in rough and oscillatory channel flow. Journal of Fluid Mechanics, 2019, 865, 790-810.	3.4	11
31	Laboratory recreation of the Draupner wave and the role of breaking in crossing seas. Journal of Fluid Mechanics, 2019, 860, 767-786.	3.4	76
32	Impact of the Swansea Bay Lagoon on Storm Surges in the Bristol Channel. , 2019, , .		2
33	Implementation of Tidal Stream Turbines and Tidal Barrage Structures in DG-SWEM. , 2019, , .		4
34	Assessment of the Malaysian tidal stream energy resource using an upper bound approach. Journal of Ocean Engineering and Marine Energy, 2018, 4, 99-109.	1.7	13
35	Prediction of tidal currents using Bayesian machine learning. Ocean Engineering, 2018, 158, 221-231.	4.3	24
36	The set-down and set-up of directionally spread and crossing surface gravity wave groups. Journal of Fluid Mechanics, 2018, 835, 131-169.	3.4	25

THOMAS A A ADCOCK

#	Article	IF	CITATIONS
37	Performance of non-uniform tidal turbine arrays in uniform flow. Journal of Ocean Engineering and Marine Energy, 2018, 4, 231-241.	1.7	3
38	Tidal range energy resource and optimization – Past perspectives and future challenges. Renewable Energy, 2018, 127, 763-778.	8.9	148
39	A note on the set-up under the Draupner wave. Journal of Ocean Engineering and Marine Energy, 2017, 3, 89-94.	1.7	3
40	The waves at the Mulberry Harbours. Journal of Ocean Engineering and Marine Energy, 2017, 3, 285-292.	1.7	0
41	On the Tidal Resonance of the Bristol Channel. International Journal of Offshore and Polar Engineering, 2017, 27, 177-183.	0.8	10
42	On the shape of large wave-groups on deep water—The influence of bandwidth and spreading. Physics of Fluids, 2016, 28, .	4.0	8
43	DeRisk — Accurate Prediction of ULS Wave Loads. Outlook and First Results. Energy Procedia, 2016, 94, 379-387.	1.8	24
44	Performance of an ideal turbine in an inviscid shear flow. Journal of Fluid Mechanics, 2016, 796, 86-112.	3.4	23
45	Non-linear evolution of uni-directional focussed wave-groups on a deep water: A comparison of models. Applied Ocean Research, 2016, 59, 147-152.	4.1	19
46	Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations. Physics of Fluids, 2016, 28, .	4.0	15
47	On tidal stream turbines placed off headlands. Journal of Renewable and Sustainable Energy, 2015, 7, 061706.	2.0	5
48	A note on the variation in shape of linear rogue waves in the ocean. Underwater Technology, 2015, 33, 75-80.	0.3	2
49	Nonlinear dynamics of wave-groups in random seas: unexpected walls of water in the open ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150660.	2.1	25
50	Tidal power generation – A review of hydrodynamic modelling. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2015, 229, 755-771.	1.4	61
51	Energy storage inherent in large tidal turbine farms. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20130580.	2.1	18
52	An electrical analogy for the Pentland Firth tidal stream power resource. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20130207.	2.1	13
53	A note on the power potential of tidal currents in channels. International Journal of Marine Energy, 2014, 6, 1-17.	1.8	2
54	Estimate of the tidal stream power resource of the Pentland Firth. Renewable Energy, 2014, 63, 650-657.	8.9	78

THOMAS A A ADCOCK

#	Article	IF	CITATIONS
55	Power extraction from tidal channels – Multiple tidal constituents, compound tides and overtides. Renewable Energy, 2014, 63, 797-806.	8.9	26
56	Tidal stream power in the Pentland Firth – long-term variability, multiple constituents and capacity factor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014, 228, 854-861.	1.4	16
57	The physics of anomalous (â€~rogue') ocean waves. Reports on Progress in Physics, 2014, 77, 105901.	20.1	84
58	On the Tidal Stream Resource of Two Headland Sites in the English Channel: Portland Bill and Isle of Wight. , 2014, , .		6
59	Tidal stream energy resource assessment of the Anglesey Skerries. International Journal of Marine Energy, 2013, 3-4, e98-e111.	1.8	52
60	The available power from tidal stream turbines in the Pentland Firth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130072.	2.1	93
61	Unidirectional power extraction from a channel connecting a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2013, 227, 826-832.	1.4	3
62	The nonlinear evolution and approximate scaling of directionally spread wave groups on deep water. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2704-2721.	2.1	20
63	Did the Draupner wave occur in a crossing sea?. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 3004-3021.	2.1	58
64	Briefing: Young Coastal Scientists and Engineers Conference 2010. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2011, 164, 3-13.	0.2	3
65	The Focusing of Uni-Directional Gaussian Wave-Groups in Finite Depth: An Approximate NLSE Based Approach. , 2010, , .		5
66	The Mulberry Harbours: A Review of an Early Example of Offshore Engineering. , 2009, , .		1
67	Focusing of unidirectional wave groups on deep water: an approximate nonlinear SchrĶdinger equation-based model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 3083-3102.	2.1	30
68	Estimating ocean wave directional spreading from an Eulerian surface elevation time history. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 3361-3381.	2.1	20