Susana O Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223422/publications.pdf

Version: 2024-02-01

90 papers

1,860 citations

23 h-index

279798

42 g-index

90 all docs 90 docs citations

90 times ranked 1978 citing authors

#	Article	IF	CITATIONS
1	Sputtering Deposition of TiO2 Thin Film Coatings for Fiber Optic Sensors. Photonics, 2022, 9, 342.	2.0	2
2	Brief Review on Optical Fiber Sensing for the Power Grid. U Porto Journal of Engineering, 2022, 8, 18-23.	0.4	1
3	Characterization of an Hollow Core PCF for Endoscopy Applications: A Proof Concept. , 2021, , .		O
4	Acoustic Optical Fiber Sensor Based on Graphene Oxide Membrane. Sensors, 2021, 21, 2336.	3.8	17
5	Thermally Stimulated Desorption Optical Fiber-Based Interrogation System: An Analysis of Graphene Oxide Layers' Stability. Photonics, 2021, 8, 70.	2.0	O
6	Optical Fiber Sensors for Structural Monitoring in Power Transformers. Sensors, 2021, 21, 6127.	3.8	5
7	Environmental Sensitivity of Fabry-Perot Microcavities Induced by Layered Graphene-Dielectric Hybrid Coatings. Physical Review Applied, 2021, 16, .	3.8	O
8	Curvature Sensor Based on a Long-Period Grating in a Fiber Ring Resonator Interrogated by an OTDR. Photonic Sensors, 2020, 10, 1-6.	5.0	3
9	Curvature detection in a medical needle using a Fabry-Perot cavity as an intensity sensor. Measurement: Journal of the International Measurement Confederation, 2020, 151, 107160.	5.0	13
10	Detection of the Crystallization Process of Paracetamol with a Multi-Mode Optical Fiber in a Reflective Configuration. Sensors, 2020, 20, 87.	3.8	8
11	Discrimination of Benign and Malignant Lesions in Canine Mammary Tissue Samples Using Raman Spectroscopy: A Pilot Study. Animals, 2020, 10, 1652.	2.3	4
12	Tuning of Fiber Optic Surface Reflectivity through Graphene Oxide-Based Layer-by-Layer Film Coatings. Photonics, 2020, $7,11.$	2.0	4
13	A Self-Referencing Intensity-Based Fabry–Perot Cavity for Curvature Measurement. , 2019, 3, 1-4.		2
14	High sensitivity strain sensor based on twin hollow microspheres. Microwave and Optical Technology Letters, 2019, 61, 454-458.	1.4	7
15	Graphene oxide as a tunable platform for microsphere-based optical fiber sensors. , 2019, , .		1
16	Fabry-Perot cavity for curvature measurement in a medical needle. , 2019, , .		0
17	Analysis of amplification in a fiber ring resonator with a fabryâ€perot cavity. Microwave and Optical Technology Letters, 2018, 60, 2231-2236.	1.4	1
18	Ring-Down Technique Using Fiber-Based Linear Cavity for Remote Sensing. , 2018, 2, 1-4.		4

#	Article	IF	Citations
19	Analysis of signal saturation in a fiber ring resonator integrating an intensity sensor. , 2017, , .		o
20	Hollow Microsphere Fabry–Perot Cavity for Sensing Applications. IEEE Photonics Technology Letters, 2017, 29, 1229-1232.	2.5	27
21	Embedded Fabry-Perot based sensor using three-dimensional printing technology. , 2017, , .		0
22	Refractive index sensing using a multimode interference-based fiber sensor in a cavity ring-down system. , 2017, , .		1
23	Multimode interference-based fiber sensor in a cavity ring-down system for refractive index measurement. Optics and Laser Technology, 2017, 91, 112-115.	4.6	17
24	Recent Advances in Fiber Cavity Ring-down Technology. , 2017, , .		0
25	Strain sensor based on hollow microsphere Fabry-Perot cavity. , 2017, , .		0
26	Cavity ringâ€down technique for remote sensing. Microwave and Optical Technology Letters, 2016, 58, 2711-2713.	1.4	4
27	Fiber Fabry-Perot interferometer for curvature sensing. Photonic Sensors, 2016, 6, 339-344.	5.0	36
28	Fiber cavity ring down and gain amplification effect. Photonic Sensors, 2016, 6, 324-327.	5.0	10
29	Cavity ring-down technique for remote sensing: a proof-of-concept for displacement measurement. Proceedings of SPIE, 2016, , .	0.8	1
30	Fiber ring resonator using a cavity ringâ€down interrogation technique for curvature sensing. Microwave and Optical Technology Letters, 2016, 58, 267-270.	1.4	4
31	[INVITED] New advances in fiber cavity ring-down technology. Optics and Laser Technology, 2016, 78, 115-119.	4.6	23
32	Ammonia sensing system based on wavelength modulation spectroscopy. Photonic Sensors, 2015, 5, 109-115.	5.0	13
33	Curvature sensing using an added-signal in a fiber optic cavity ring-down system. Proceedings of SPIE, 2015, , .	0.8	0
34	Fiber optic sensing system for temperature and gas monitoring in coal waste pile combustion environments. Proceedings of SPIE, 2015, , .	0.8	1
35	Simultaneous measurement of strain and temperature based on clover microstructured fiber loop mirror. Measurement: Journal of the International Measurement Confederation, 2015, 65, 50-53.	5. 0	10
36	Chirped fiber bragg grating cavity ring-down for strain sensing using an OTDR. Microwave and Optical Technology Letters, 2015, 57, 1442-1444.	1.4	6

#	Article	IF	CITATIONS
37	Fiber-Optic Cavity Ring Down Using an Added-Signal for Curvature Sensing. IEEE Photonics Technology Letters, 2015, 27, 2079-2082.	2.5	10
38	Refractive Index Measurement of Liquids Based on Microstructured Optical Fibers. Photonics, 2014, 1, $516-529$.	2.0	29
39	Multiparameter measurement using a double-Y-shaped suspended-core fiber in a fiber loop configuration. , 2014, , .		0
40	Fiber cavity ring-down using an optical time-domain reflectometer. Photonic Sensors, 2014, 4, 295-299.	5.0	18
41	Detection of evaporation process of acetone with a microstructured fiber in a reflective configuration. Optical Engineering, 2014, 53, 080501.	1.0	2
42	Cavity ring-down with OTDR for remote sensing. Proceedings of SPIE, 2014, , .	0.8	1
43	An all-fiber Fabry-Pérot interferometer for pressure sensing in different gaseous environments. Measurement: Journal of the International Measurement Confederation, 2014, 47, 418-421.	5.0	16
44	Optical Inclinometer Based on a Phase-Shifted Bragg Grating in a Taper Configuration. IEEE Photonics Technology Letters, 2014, 26, 405-407.	2.5	15
45	A new cavity ring-down topology for remote sensing. , 2014, , .		2
46	Advanced fiber-optic acoustic sensors. Photonic Sensors, 2014, 4, 198-208.	5.0	76
47	Fiber cavity ring-down for strain sensing using an OTDR. , 2014, , .		0
48	Strain sensitivity enhancement in suspended core fiber tapers. Photonic Sensors, 2013, 3, 118-123.	5.0	7
49	Pressure sensor based on an all-fiber Fabry-Pérot interferometer for different gaseous environments. , 2013, , .		0
50	Next generation of Fabry-Perot sensors for high-temperature. Optical Fiber Technology, 2013, 19, 833-837.	2.7	24
51	H ₂ Sensing Based on a Pd-Coated Tapered-FBG Fabricated by DUV Femtosecond Laser Technique. IEEE Photonics Technology Letters, 2013, 25, 401-403.	2.5	60
52	Strain-Temperature Discrimination Using Multimode Interference in Tapered Fiber. IEEE Photonics Technology Letters, 2013, 25, 155-158.	2.5	53
53	Gas refractometry based on an all-fiber spatial optical filter. Optics Letters, 2012, 37, 3450.	3.3	10
54	Ultrahigh-sensitivity temperature fiber sensor based on multimode interference. Applied Optics, 2012, 51, 3236.	1.8	116

#	Article	lF	CITATIONS
55	Multimode interference tapered fiber refractive index sensors. Applied Optics, 2012, 51, 5941.	1.8	70
56	Simultaneous measurement of strain and temperature based on clover microstructured fiber loop mirror. Proceedings of SPIE, 2012, , .	0.8	3
57	Strain characterization of suspended-core fiber tapers. , 2012, , .		0
58	Interferometer based on a D-shape chaotic optical fiber for measurement of multiparameters. Photonic Sensors, 2012, 2, 381-384.	5.0	0
59	Curvature and Temperature Discrimination Using Multimode Interference Fiber Optic Structures—A Proof of Concept. Journal of Lightwave Technology, 2012, 30, 3569-3575.	4.6	36
60	A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection. IEEE Sensors Journal, 2012, 12, 93-102.	4.7	114
61	Multimode interference as a tool for fiber sensing. , 2012, , .		0
62	Multimode interference in tapered single mode-multimode-single mode fiber structures for strain sensing applications. , 2012, , .		6
63	Fiber Optic-Based Refractive Index Sensing at INESC Porto. Sensors, 2012, 12, 8371-8389.	3.8	29
64	A reflective optical fiber refractometer based on multimode interference. Sensors and Actuators B: Chemical, 2012, 161, 88-92.	7.8	63
65	Ultrahigh-sensitivity temperature fiber sensor based on multimode interference. Applied Optics, 2012, 51, 2542.	2.1	8
66	New spatial optical filters for gas refractometry. , 2012, , .		0
67	Fiber Bragg Grating Structures with Fused Tapers. Fiber and Integrated Optics, 2011, 30, 9-28.	2.5	26
68	Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure. Measurement Science and Technology, 2011, 22, 085201.	2.6	59
69	Simultaneous measurement of three parameters using an all-fiber Mach–Zehnder interferometer based on suspended twin-core fibers. Optical Engineering, 2011, 50, 030501.	1.0	10
70	Optical fiber refractometry based on multimode interference. Applied Optics, 2011, 50, E184.	2.1	45
71	Optical refractometer based on large-core air-clad photonic crystal fibers. Optics Letters, 2011, 36, 852.	3.3	36
72	Multimodal interference based on large-core air-clad photonic crystal fibres for simultaneous measurement of multiparameters., 2011,,.		0

#	Article	IF	CITATIONS
73	Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology and Biotechnology, 2011, 89, 1275-1288.	3.6	386
74	Microcystin-LR detection in water by the Fabry–Pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane. Biosensors and Bioelectronics, 2011, 26, 3932-3937.	10.1	39
75	A simple interrogation technique for refractive index measurement using multimode interference structure. Proceedings of SPIE, $2011, , .$	0.8	0
76	Optical fibre hydrogen sensors based on palladium coatings. Proceedings of SPIE, 2011, , .	0.8	0
77	Optical cavity fibre sensor for detection of microcystin-LR in water. , 2010, , .		3
78	All fibre Mach-Zehnder interferometer based on suspended twin-core fibre for simultaneous measurement of three parameters. , 2010, , .		1
79	Temperature- and strain-independent curvature sensor based on multimode interference. Proceedings of SPIE, 2010, , .	0.8	1
80	Fibre Bragg grating sensors for monitoring the metal inert gas and friction stir welding processes. Measurement Science and Technology, 2010, 21, 085105.	2.6	16
81	All Fiber Mach–Zehnder Interferometer Based on Suspended Twin-Core Fiber. IEEE Photonics Technology Letters, 2010, 22, 1300-1302.	2.5	74
82	A hybrid Fabry–Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber. Measurement Science and Technology, 2010, 21, 025205.	2.6	23
83	Measurement of acetic acid using a fibre Bragg grating interferometer. Measurement Science and Technology, 2009, 20, 125201.	2.6	4
84	Interferometric fibre-optic sensor for acetic acid measurement. Proceedings of SPIE, 2009, , .	0.8	1
85	Interrogation of a fibre Fabry–Perot interferometer using a π-shifted Bragg grating. Measurement Science and Technology, 2008, 19, 085302.	2.6	0
86	Optical fiber refractometer based on a Fabry-Pérot interferometer. Optical Engineering, 2008, 47, 054403.	1.0	43
87	Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber. Applied Optics, 2008, 47, 4841.	2.1	87
88	Fibre Bragg grating structure in a braid twisted configuration for sensing applications. Journal of Optics, 2008, 10, 055308.	1.5	1
89	Fibre refractometer based on a Fabry-P $ ilde{A}f\hat{A}$ ©rot interferometer. Proceedings of SPIE, 2008, , .	0.8	1
90	Discrimination of Temperature, Strain, and Transverse Load by Using Fiber Bragg Gratings in a Twisted Configuration. IEEE Sensors Journal, 2006, 6, 1609-1613.	4.7	11