Harold N Trick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122324/publications.pdf

Version: 2024-02-01

79 papers

7,685

38 h-index 71532 76 g-index

83 all docs 83 docs citations

83 times ranked 7458 citing authors

#	Article	IF	CITATIONS
1	A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 2007, 39, 1156-1161.	9.4	665
2	Molecular Characterization of the Major Wheat Domestication Gene Q. Genetics, 2006, 172, 547-555.	1.2	535
3	Map-Based Cloning of Leaf Rust Resistance Gene <i>Lr21</i> From the Large and Polyploid Genome of Bread Wheat. Genetics, 2003, 164, 655-664.	1.2	468
4	Parallel domestication of the Shattering1 genes in cereals. Nature Genetics, 2012, 44, 720-724.	9.4	401
5	Genetically Engineered Resistance to Fusarium Head Blight in Wheat by Expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions, 2006, 19, 123-129.	1.4	313
6	Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nature Genetics, 2016, 48, 1576-1580.	9.4	299
7	Identification of Wheat Gene <i>Sr35</i> That Confers Resistance to Ug99 Stem Rust Race Group. Science, 2013, 341, 783-786.	6.0	283
8	Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. Journal of Experimental Botany, 2003, 54, 1101-1111.	2.4	271
9	A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nature Genetics, 2019, 51, 1099-1105.	9.4	258
10	Transgenerational CRISPR-Cas9 Activity Facilitates Multiplex Gene Editing in Allopolyploid Wheat. CRISPR Journal, 2018, 1, 65-74.	1.4	248
11	A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15383-15388.	3.3	243
12	SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Research, 1997, 6, 329-336.	1.3	227
13	Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. Journal of Plant Physiology, 2009, 166, 180-191.	1.6	219
14	The hijacking of a receptor kinase–driven pathway by a wheat fungal pathogen leads to disease. Science Advances, 2016, 2, e1600822.	4.7	188
15	Presence of tannins in sorghum grains is conditioned by different natural alleles of <i>Tannin1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, $10281-10286$.	3.3	156
16	Salicylic Acid Regulates Basal Resistance to Fusarium Head Blight in Wheat. Molecular Plant-Microbe Interactions, 2012, 25, 431-439.	1.4	154
17	Cloning and Characterization of a Critical Regulator for Preharvest Sprouting in Wheat. Genetics, 2013, 195, 263-273.	1.2	148
18	Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Functional Plant Biology, 2006, 33, 991.	1.1	147

#	Article	IF	Citations
19	Sonication-assisted Agrobacterium -mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports, 1998, 17, 482-488.	2.8	144
20	Sonication-assisted Agrobacterium- mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Reports, 1998, 17, 752-759.	2.8	144
21	Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2Âhomoeologues to grain size and weight in wheat. Theoretical and Applied Genetics, 2018, 131, 2463-2475.	1.8	142
22	Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch. BioTechniques, 2005, 38, 872-876.	0.8	123
23	Pathogenesis-related proteins and their genes in cereals. Plant Cell, Tissue and Organ Culture, 2001, 64, 93-114.	1.2	121
24	Toward positional cloning of <i>Fhb1 </i> , a major QTL for Fusarium head blight resistance in wheat. Cereal Research Communications, 2008, 36, 195-201.	0.8	118
25	The avrRxo1 Gene from the Rice Pathogen Xanthomonas oryzae pv. oryzicola Confers a Nonhost Defense Reaction on Maize with Resistance Gene Rxo1. Molecular Plant-Microbe Interactions, 2004, 17, 771-779.	1.4	97
26	Gene editing of the wheat homologs of <scp>TONNEAU</scp> 1â€recruiting motif encoding gene affects grain shape and weight in wheat. Plant Journal, 2019, 100, 251-264.	2.8	97
27	Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 742-747.	0.9	90
28	Stable transgene expression and random gene silencing in wheat. Plant Biotechnology Journal, 2003, 1, 241-251.	4.1	74
29	Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Molecular Biology, 2008, 68, 277-288.	2.0	66
30	Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe. Planta, 2010, 232, 775-785.	1.6	65
31	Facilitation of <i>Fusarium graminearum</i> Infection by 9-Lipoxygenases in <i>Arabidopsis</i> and Wheat. Molecular Plant-Microbe Interactions, 2015, 28, 1142-1152.	1.4	65
32	Genetic and Molecular Characterization of the Maize <i>rp3</i> Rust Resistance Locus. Genetics, 2002, 162, 381-394.	1.2	59
33	Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing. BMC Genomics, 2017, 18, 572.	1.2	56
34	Phospholipid and triacylglycerol profiles modified by <i>PLD</i> suppression in soybean seed. Plant Biotechnology Journal, 2011, 9, 359-372.	4.1	54
35	Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Reports, 2010, 29, 113-123.	2.8	52
36	Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 216-227.	0.9	50

3

#	Article	IF	Citations
37	Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed. Plant Biotechnology Journal, 2012, 10, 164-173.	4.1	49
38	W3 Is a New Wax Locus That Is Essential for Biosynthesis of \hat{l}^2 -Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat. PLoS ONE, 2015, 10, e0140524.	1.1	47
39	Allelochemicals targeted to balance competing selections in African agroecosystems. Nature Plants, 2019, 5, 1229-1236.	4.7	41
40	Recombinant Rp1 genes confer necrotic or nonspecific resistance phenotypes. Molecular Genetics and Genomics, 2010, 283, 591-602.	1.0	39
41	Independent misâ€splicing mutations in <i>Ta<scp>PHS</scp>1</i> causing loss ofÂpreharvest sprouting (<scp>PHS</scp>) resistance during wheat domestication. New Phytologist, 2015, 208, 928-935.	3.5	39
42	Recent advances in wheat transformation. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 404-414.	0.9	34
43	Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge. Nature Communications, 2013, 4, 2070.	5.8	33
44	A Lipid Transfer Protein has Antifungal and Antioxidant Activity and Suppresses Fusarium Head Blight Disease and DON Accumulation in Transgenic Wheat. Phytopathology, 2021, 111, 671-683.	1.1	33
45	QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. Theoretical and Applied Genetics, 2018, 131, 1683-1697.	1.8	32
46	Aberrant mRNA Processing of the Maize Rp1-D Rust Resistance Gene in Wheat and Barley. Molecular Plant-Microbe Interactions, 2004, 17, 853-864.	1.4	31
47	High-level Expression of Maize \hat{I}^3 -zein Protein in Transgenic Soybean (Glycine max). Molecular Breeding, 2005, 16, 11-20.	1.0	31
48	Biotechnological application of functional genomics towards plantâ€parasitic nematode control. Plant Biotechnology Journal, 2011, 9, 936-944.	4.1	31
49	The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2015, 28, 943-953.	1.4	29
50	Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nature Communications, 2022, 13, .	5.8	29
51	Chromosome elimination in asymmetric somatic hybrids: effect of gamma dose and time in culture. Theoretical and Applied Genetics, 1994, 88, 965-972.	1.8	28
52	Enhancing lignan biosynthesis by overâ€expressing pinoresinol lariciresinol reductase in transgenic wheat. Molecular Nutrition and Food Research, 2007, 51, 1518-1526.	1.5	26
53	Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode. Genes, 2016, 7, 122.	1.0	23
54	Targeting the patternâ€triggered immunity pathway to enhance resistance to <i>Fusarium graminearum</i> . Molecular Plant Pathology, 2019, 20, 626-640.	2.0	23

#	Article	IF	CITATIONS
55	Development and optimization of a <i>Barley stripe mosaic virus</i> â€mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnology Journal, 2022, 20, 1018-1020.	4.1	23
56	Biofortification of Soybean Meal: Immunological Properties of the 27 kDa \hat{I}^3 -Zein. Journal of Agricultural and Food Chemistry, 2011, 59, 1223-1228.	2.4	21
57	Stable resistance to Wheat streak mosaic virus in wheat mediated by RNAi. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 665-672.	0.9	19
58	Induction of somatic embryogenesis and genetic transformation of ohio buckeye (Aesculus glabra) Tj ETQq0 0	0 rgBT_/Ov	erlock 10 Tf 5 18
59	Wheat differential gene expression induced by different races of Puccinia triticina. PLoS ONE, 2018, 13, e0198350.	1.1	18
60	RNAiâ€Mediated, Stable Resistance to <i>Triticum mosaic virus</i> in Wheat. Crop Science, 2016, 56, 1602-1610.	0.8	17
61	Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases. Plant Biotechnology Journal, 2021, 19, 2428-2441.	4.1	16
62	Host-derived gene silencing of parasite fitness genes improves resistance to soybean cyst nematodes in stable transgenic soybean. Theoretical and Applied Genetics, 2019, 132, 2651-2662.	1.8	15
63	Specialized calciferous cells in the marine algaRhodogorgon carriebowensis and their implications for models of red algal calcification. Protoplasma, 1992, 166, 89-98.	1.0	11
64	Two small secreted proteins fromPuccinia triticinainduce reduction of ß-glucoronidase transient expression in wheat isolines containingLr9, Lr24andLr26. Canadian Journal of Plant Pathology, 2016, 38, 91-102.	0.8	11
65	RNAiâ€Mediated Silencing of Endogenous Wheat Genes <i>EIF(Iso)4Eâ€2</i> and <i>EIF4G</i> Induce Resistance to Multiple RNA Viruses in Transgenic Wheat. Crop Science, 2019, 59, 2642-2651.	0.8	10
66	Biolistic Transformation of Wheat. Methods in Molecular Biology, 2019, 1864, 117-130.	0.4	10
67	Identification of candidate chromosome region of Sbwm1 for Soil-borne wheat mosaic virus resistance in wheat. Scientific Reports, 2020, 10, 8119.	1.6	10
68	Introduction and constitutive expression of a tobacco hornworm (Manduca sexta) chitinase gene in soybean. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 260-265.	0.9	9
69	Fine structure of the phylogenetically important marine algaRhodogorgon carriebowensis (Rhodophyta, Batrachospermales?). Protoplasma, 1992, 166, 78-88.	1.0	8
70	Soybean. Biotechnology in Agriculture and Forestry, 2010, , 473-498.	0.2	7
71	Comparative analyses of transcriptional responses of Dectes texanus LeConte (Coleoptera:) Tj ETQq1 1 0.7843	14 rgBT /C 1.6	overlock 10 Tf 6
72	Unusual morphological and cytochemical features of pit plugs inClathromorphum circumscriptum(Rhodophyta, Corallinales). British Phycological Journal, 1991, 26, 335-342.	1.3	4

#	Article	IF	CITATIONS
73	Bromodeoxy uridine combined with UV light and gamma irradiation promotes the production of asymmetric somatic hybrid calli. Plant Cell Reports, 1996, 15, 986-990.	2.8	4
74	A simplified method for producing laboratory grade recombinant TEV protease from E. coli. Protein Expression and Purification, 2020, 174, 105662.	0.6	3
75	Effector Genes in <i>Magnaporthe oryzae Triticum</i> as Potential Targets for Incorporating Blast Resistance in Wheat. Plant Disease, 2022, 106, 1700-1712.	0.7	3
76	Compatibility of Foliar Insecticides and Soybean Cyst Nematode Bioassays. Plant Health Progress, 2012, 13, 44.	0.8	1
77	Assessment of Insecticide/Miticide Treatments on Soybean Cyst Nematode Bioassays Under Greenhouse Conditions. Plant Health Progress, 2019, 20, 74-76.	0.8	0
78	Inheritance of Antibiosis Resistance to the Dectes Stem Borer, Dectes texanus, in Soybean P1165673. Agronomy, 2021, 11, 738.	1.3	0
79	Overâ€expression of the Lignan Biosynthesis Enzyme in Transgenic Wheat. FASEB Journal, 2006, 20, A572.	0.2	0