
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223231/publications.pdf Version: 2024-02-01

DETED S 711 M

#	Article	IF	CITATIONS
1	Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology (United Kingdom), 2002, 148, 467-472.	0.7	186
2	Dengue Virus Infection Induces Upregulation of GRP78, Which Acts To Chaperone Viral Antigen Production. Journal of Virology, 2009, 83, 12871-12880.	1.5	87
3	â€~Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. Journal of Colloid and Interface Science, 2016, 482, 151-158.	5.0	78
4	An <i>in vitro</i> model to measure the effect of a silver fluoride and potassium iodide treatment on the permeability of demineralized dentine to <i>Streptococcus mutans</i> . Australian Dental Journal, 2005, 50, 242-245.	0.6	73
5	Probiotic <i>Lactobacillus rhamnosus GG</i> prevents alveolar bone loss in a mouse model of experimental periodontitis. Journal of Clinical Periodontology, 2018, 45, 204-212.	2.3	71
6	Proteomic Characterization of Mesenchymal Stem Cell-Like Populations Derived from Ovine Periodontal Ligament, Dental Pulp, and Bone Marrow: Analysis of Differentially Expressed Proteins. Stem Cells and Development, 2010, 19, 1485-1499.	1.1	66
7	Differences between normal and demineralized dentine pretreated with silver fluoride and potassium iodide after an <i>in vitro</i> challenge by <i>Streptococcus mutans</i> . Australian Dental Journal, 2007, 52, 16-21.	0.6	59
8	Aspects of the growth and metabolism of <i>Fusobacterium nucleatum</i> ATCC 10953 in continuous culture. Oral Microbiology and Immunology, 1991, 6, 250-255.	2.8	54
9	Identification of components in Fusobacterium nucleatum chemostat-culture supernatants that are potent inhibitors of human gingival fibroblast proliferation. Journal of Periodontal Research, 1991, 26, 314-322.	1.4	53
10	Effect of dietary omegaâ€3 polyunsaturated fatty acids on experimental periodontitis in the mouse. Journal of Periodontal Research, 2009, 44, 211-216.	1.4	50
11	D-amino acids reduce Enterococcus faecalis biofilms in vitro and in the presence of antimicrobials used for root canal treatment. PLoS ONE, 2017, 12, e0170670.	1.1	50
12	Co-adhesion and biofilm formation by Fusobacterium nucleatum in response to growth pH. Anaerobe, 2007, 13, 146-152.	1.0	43
13	The response to oxidative stress ofFusobacterium nucleatumgrown in continuous culture. FEMS Microbiology Letters, 2000, 187, 31-34.	0.7	40
14	Prolonged Growth of a Clinical Staphylococcus aureus Strain Selects for a Stable Small-Colony-Variant Cell Type. Infection and Immunity, 2015, 83, 470-481.	1.0	36
15	Efficacy of low concentrations of sodium hypochlorite and lowâ€powered Er,Cr: <scp>YSGG</scp> laser activated irrigation against an <i>Enterococcus faecalis</i> biofilm. International Endodontic Journal, 2016, 49, 279-286.	2.3	36
16	Sodium Ion-Driven Serine/Threonine Transport in Porphyromonas gingivalis. Journal of Bacteriology, 2001, 183, 4142-4148.	1.0	35
17	A proteomic investigation of Fusobacterium nucleatum alkaline-induced biofilms. BMC Microbiology, 2012, 12, 189.	1.3	34
18	The inability of <i>Streptococcus mutans</i> and <i>Lactobacillus acidophilus</i> to form a biofilm <i>in vitro</i> on dentine pretreated with ozone. Australian Dental Journal, 2008, 53, 349-353.	0.6	33

#	Article	IF	CITATIONS
19	The breakdown and utilization of peptides by strains of Fusobacterium nucleatum. Oral Microbiology and Immunology, 1992, 7, 299-303.	2.8	31
20	A SEM evaluation of debris removal from endodontic files after cleaning and steam sterilization procedures. Australian Dental Journal, 2004, 49, 128-135.	0.6	31
21	Response of a Streptococcus sanguis strain to arginine-containing peptides. Infection and Immunity, 1988, 56, 687-692.	1.0	31
22	Clonal diversity in biofilm formation by <i>Enterococcus faecalis</i> in response to environmental stress associated with endodontic irrigants and medicaments. International Endodontic Journal, 2015, 48, 210-219.	2.3	30
23	Estimation of growth parameters for some oral bacteria grown in continuous culture under glucose-limiting conditions. Infection and Immunity, 1986, 52, 897-901.	1.0	30
24	Studies on NADH oxidase and alkyl hydroperoxide reductase produced by Porphyromonas gingivalis. Oral Microbiology and Immunology, 2004, 19, 137-143.	2.8	27
25	Novel Research Models for Staphylococcus aureus Small Colony Variants (SCV) Development: Co-pathogenesis and Growth Rate. Frontiers in Microbiology, 2020, 11, 321.	1.5	27
26	The use of liveâ€animal microâ€computed tomography to determine the effect of a novel phospholipase A ₂ inhibitor on alveolar bone loss in an <i>in vivo</i> mouse model of periodontitis. Journal of Periodontal Research, 2009, 44, 317-322.	1.4	26
27	The effect of growth rate on the adhesion of the oral bacteria Streptococcus mutans and Streptococcus milleri. Archives of Oral Biology, 1984, 29, 147-150.	0.8	25
28	Microbiological evaluation of endodontic files after cleaning and steam sterilization procedures. Australian Dental Journal, 2004, 49, 122-127.	0.6	25
29	Qualitative comparison of sonic or laser energisation of 4% sodium hypochlorite on an <i>Enterococcus faecalis</i> biofilm grown <i>in vitro</i> . Australian Endodontic Journal, 2012, 38, 100-106.	0.6	25
30	Effect of alkaline growth pH on the expression of cell envelope proteins in Fusobacterium nucleatum. Microbiology (United Kingdom), 2010, 156, 1783-1794.	0.7	25
31	Effects of pulsing with xylitol on mixed continuous cultures of oral streptococci. Australian Dental Journal, 1991, 36, 231-235.	0.6	24
32	The Behaviour ofFusobacterium nucleatumChemostat-grown in Glucose- and Amino Acid-based Chemically Defined Media. Anaerobe, 1998, 4, 111-116.	1.0	23
33	The proteomic profile of Fusobacterium nucleatum is regulated by growth pH. Microbiology (United) Tj ETQq1	1 0.784314 0.7	4 rg <u>B</u> T /Overla
34	Abnormal Pregnancy Outcomes in Mice Using an Induced Periodontitis Model and the Haematogenous Migration of Fusobacterium nucleatum Sub-Species to the Murine Placenta. PLoS ONE, 2015, 10, e0120050.	1.1	23
35	Antimicrobial properties of calcium hydroxide dressing when used for longâ€ŧerm application: A systematic review. Australian Endodontic Journal, 2018, 44, 60-65.	0.6	23
36	The utilisation of arginine by oral streptococci grown glucose-limited in a chemostat. FEMS Microbiology Letters, 1986, 37, 9-13.	0.7	22

#	Article	IF	CITATIONS
37	Comparative efficacy of endodontic medicaments and sodium hypochlorite against <i>Enterococcus faecalis</i> biofilms. Australian Dental Journal, 2018, 63, 208-216.	0.6	21
38	Influence of arginine on the coexistence ofStreptococcus mutans andS. milleri in glucose-limited mixed continuous culture. Microbial Ecology, 1987, 14, 193-202.	1.4	20
39	Some aspects of protease production by a strain of Streptococcus sanguis. Oral Microbiology and Immunology, 1990, 5, 72-76.	2.8	19
40	Development and characterization of an oral microbiome transplant among Australians for the treatment of dental caries and periodontal disease: A study protocol. PLoS ONE, 2021, 16, e0260433.	1.1	19
41	An <i>in vitro</i> investigation of marginal dentine caries abutting composite resin and glass ionomer cement restorations. Australian Dental Journal, 2007, 52, 187-192.	0.6	17
42	Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells. Stem Cells International, 2016, 2016, 1-13.	1.2	17
43	Proteomic identification of proteinase inhibitors in the porcine enamel matrix derivative, EMD®. Journal of Periodontal Research, 2011, 46, 111-117.	1.4	16
44	The effect of sodium hypochlorite on <i>Enterococcus faecalis</i> when grown on dentine as a single- and multi-species biofilm. Australian Endodontic Journal, 2014, 40, 101-110.	0.6	16
45	"Chocolate―Gold Nanoparticles—One Pot Synthesis and Biocompatibility. Nanomaterials, 2018, 8, 496.	1.9	16
46	Growth pH and transient increases in amino acid availability influence polyglucose synthesis byFusobacterium nucleatumgrown in continuous culture. FEMS Microbiology Letters, 2002, 215, 203-208.	0.7	15
47	Isolation and identification of Enterococcus faecalis membrane proteins using membrane shaving, 1D SDS/PAGE, and mass spectrometry. FEBS Open Bio, 2016, 6, 586-593.	1.0	13
48	Spiked Titanium Nanostructures That Inhibit Anaerobic Dental Pathogens. ACS Applied Nano Materials, 2022, 5, 12051-12062.	2.4	13
49	Efficacy of laser and ultrasonicâ€activated irrigation on eradicating a mixedâ€species biofilm in human mesial roots. Australian Endodontic Journal, 2019, 45, 317-324.	0.6	11
50	Comparison of the Biocidal Efficacy of Sodium Dichloroisocyanurate and Calcium Hydroxide as Intracanal Medicaments over a 7-Day Contact Time: An ExÂVivo Study. Journal of Endodontics, 2020, 46, 1273-1278.	1.4	11
51	Factors affecting peptide catabolism by oral streptococci. Oral Microbiology and Immunology, 1991, 6, 72-75.	2.8	9
52	The influence of intracellular polyglucose and prior growth rate on the survival of Fusobacterium nucleatum under starvation conditions. Oral Microbiology and Immunology, 1995, 10, 119-121.	2.8	8
53	Specific growth conditions induce a Streptococcus pneumoniae non-mucoidal, small colony variant and determine the outcome of its co-culture with Haemophilus influenzae. Pathogens and Disease, 2018, 76, .	0.8	8
54	Spiked Nanostructures Disrupt Fungal Biofilm and Impart Increased Sensitivity to Antifungal Treatment. Advanced Materials Interfaces, 0, , 2102353.	1.9	7

#	ARTICLE	IF	CITATIONS
55	Probiotic Lactobacillus Rhamnosus GG Protects Against P. Gingivalis And F. Nucleatum Gut Dysbiosis. Journal of the International Academy of Periodontology, 2020, 22, 18-27.	0.7	7
56	Association between Extracellular Material and Biofilm Formation in Response to Sodium Hypochlorite by Clinical Isolates of Enterococcus faecalis. Journal of Endodontics, 2018, 44, 269-273.	1.4	6
57	Silver nanoparticle modified surfaces induce differentiation of mouse kidney-derived stem cells. RSC Advances, 2018, 8, 20334-20340.	1.7	6
58	Changes in growth and polyglucose synthesis in response to fructose metabolism by Fusobacterium nucleatum grown in continuous culture. Oral Microbiology and Immunology, 2003, 18, 260-262.	2.8	5
59	Core-in-cage structure regulated properties of ultra-small gold nanoparticles. Nanoscale Advances, 2019, , .	2.2	5
60	Some aspects of arginine assimilation in a strain ofStreptococcus sanguis. Current Microbiology, 1990, 20, 19-22.	1.0	4
61	Investigation of the effect of rapid and slow external <scp>pH</scp> increases on <i>Enterococcus faecalis</i> biofilm grown on dentine. Australian Dental Journal, 2018, 63, 224-230.	0.6	3
62	Disruption of Enterococcus Faecalis biofilms using individual and plasma polymer encapsulated D-amino acids. Clinical Oral Investigations, 2021, 25, 3305-3313.	1.4	3
63	Bioactive Plasma Coatings on Orthodontic Brackets: In Vitro Metal Ion Release and Cytotoxicity. Coatings, 2021, 11, 857.	1.2	3
64	A colourimetric evaluation of the effect of bacterial contamination on teeth stained with blood <i>inÂvitro</i> : Evaluation of the efficacy of two different bleaching regimes. Australian Dental Journal, 2018, 63, 253-260.	0.6	2
65	Response to L-Sorbose of Oral Streptococci Grown in Continuous Culture. Caries Research, 1987, 21, 215-221.	0.9	1
66	Spiked Nanostructures Disrupt Fungal Biofilm and Impart Increased Sensitivity to Antifungal Treatment (Adv. Mater. Interfaces 12/2022). Advanced Materials Interfaces, 2022, 9, .	1.9	0