
Justin R Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The PAR4 Platelet Thrombin Receptor Variant rs773902 does not Impact the Incidence of Thrombotic or Bleeding Events in a Healthy Older Population. Thrombosis and Haemostasis, 2022, 122, 1130-1138.	3.4	1
2	An extensional strain sensing mechanosome drives adhesion-independent platelet activation at supraphysiological hemodynamic gradients. BMC Biology, 2022, 20, 73.	3.8	7
3	Neutrophil cathepsin G proteolysis of protease-activated receptor 4Âgenerates a novel, functional tethered ligand. Blood Advances, 2022, 6, 2303-2308.	5.2	5
4	Phosphoinositide 3-Kinases as Potential Targets for Thrombosis Prevention. International Journal of Molecular Sciences, 2022, 23, 4840.	4.1	6
5	Identification of a Distinct Platelet Phenotype in the Elderly: ADP Hypersensitivity Coexists With Platelet PAR (Protease-Activated Receptor)-1 and PAR-4–Mediated Thrombin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 960-972.	2.4	4
6	lonotropic glutamate receptors in platelets: opposing effects and a unifying hypothesis. Platelets, 2021, 32, 998-1008.	2.3	6
7	Proteinase-activated receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
8	Disrupting the platelet internal membrane via PI3KC2α inhibition impairs thrombosis independently of canonical platelet activation. Science Translational Medicine, 2020, 12, .	12.4	16
9	Determination of PAR4 numbers on the surface of human platelets: no effect of the single nucleotide polymorphism rs773902. Platelets, 2020, 32, 1-4.	2.3	2
10	Analysis of the F2LR3 (PAR4) Single Nucleotide Polymorphism (rs773902) in an Indigenous Australian Population. Frontiers in Genetics, 2020, 11, 432.	2.3	2
11	Shared roles for Scl and Lyl1 in murine platelet production and function. Blood, 2019, 134, 826-835.	1.4	15
12	Illustrated Stateâ€ofâ€ŧheâ€Art Capsules of the ISTH 2019 Congress in Melbourne, Australia. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 431-497.	2.3	11
13	The mode of anesthesia influences outcome in mouse models of arterial thrombosis. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 197-206.	2.3	12
14	Using PAR4 Inhibition as an Anti-Thrombotic Approach: Why, How, and When?. International Journal of Molecular Sciences, 2019, 20, 5629.	4.1	20
15	The <scp>PI</scp> 3â€kinase <scp>PI</scp> 3 <scp>KC</scp> 2α regulates mouse platelet membrane structure and function independently of membrane lipid composition. FEBS Letters, 2019, 593, 88-96.	2.8	12
16	Proteinase-activated receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	3
17	Structure and function of the open canalicular system – the platelet's specialized internal membrane network. Platelets, 2018, 29, 319-325.	2.3	42
18	Perinatal lethality of <i>Par4</i> ^{–/–} mice delivered by primiparous dams reveals spontaneous bleeding in mice without platelet thrombin receptor function. Platelets, 2018, 29, 196-198.	2.3	2

JUSTIN R HAMILTON

#	Article	IF	CITATIONS
19	A function-blocking PAR4 antibody is markedly antithrombotic in the face of a hyperreactive PAR4 variant. Blood Advances, 2018, 2, 1283-1293.	5.2	24
20	Inhibition of NMDA receptor function with an anti-GluN1-S2 antibody impairs human platelet function and thrombosis. Platelets, 2017, 28, 799-811.	2.3	18
21	Challenges and Opportunities in Protease-Activated Receptor Drug Development. Annual Review of Pharmacology and Toxicology, 2017, 57, 349-373.	9.4	50
22	Class II Phosphoinositide 3-Kinases as Novel Drug Targets. Journal of Medicinal Chemistry, 2017, 60, 47-65.	6.4	26
23	Drugs targeting protease-activated receptor-4 improve the anti-thrombotic therapeutic window. Annals of Translational Medicine, 2017, 5, 464-464.	1.7	7
24	Inhibition of proteaseâ€activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. Journal of Thrombosis and Haemostasis, 2016, 14, 1642-1654.	3.8	42
25	Proteaseâ€activated receptor 4: from structure to function and back again. British Journal of Pharmacology, 2016, 173, 2952-2965.	5.4	42
26	Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922). European Journal of Medicinal Chemistry, 2016, 122, 339-351.	5.5	31
27	Combined deficiency of PI3KC2α and PI3KC2β reveals a nonredundant role for PI3KC2α in regulating mouse platelet structure and thrombus stability. Platelets, 2016, 27, 402-409.	2.3	15
28	Humanizing the Protease-Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PAR1 into the Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets. PLoS ONE, 2016, 11, e0165565.	2.5	16
29	Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPlbα. Redox Biology, 2015, 6, 640-647.	9.0	59
30	The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 2015, 6, 6535.	12.8	67
31	Approval of the first protease-activated receptor antagonist: Rationale, development, significance, and considerations of a novel anti-platelet agent. Blood Reviews, 2015, 29, 179-189.	5.7	43
32	Differential Signaling by Protease-Activated Receptors: Implications for Therapeutic Targeting. International Journal of Molecular Sciences, 2014, 15, 6169-6183.	4.1	34
33	The PAR1 antagonist, SCH79797, alters platelet morphology and function independently of PARs. Thrombosis and Haemostasis, 2013, 109, 164-167.	3.4	10
34	Safety and efficacy of targeting platelet proteinaseâ€activated receptors in combination with existing antiâ€platelet drugs as antithrombotics in mice. British Journal of Pharmacology, 2012, 166, 2188-2197.	5.4	18
35	The contribution of thrombin-induced platelet activation to thrombus growth is diminished under pathological blood shear conditions. Thrombosis and Haemostasis, 2012, 107, 328-337.	3.4	21
36	Physiology, pharmacology, and therapeutic potential of protease-activated receptors in vascular disease. , 2012, 134, 246-259.		28

3

JUSTIN R HAMILTON

#	Article	IF	CITATIONS
37	Protease-activated receptors as targets for antiplatelet therapy. Blood Reviews, 2009, 23, 61-65.	5.7	33
38	Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation. Arthritis Research and Therapy, 2008, 10, R42.	3.5	35
39	Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth. Blood, 2008, 112, 90-99.	1.4	123
40	Par4 is required for platelet thrombus propagation but not fibrin generation in a mouse model of thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 288-292.	7.1	198
41	Combined deficiency of protease-activated receptor-4 and fibrinogen recapitulates the hemostatic defect but not the embryonic lethality of prothrombin deficiency. Blood, 2004, 103, 152-154.	1.4	40
42	Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells. Blood, 2003, 102, 3224-3231.	1.4	166
43	Protection against thrombosis in mice lacking PAR3. Blood, 2002, 100, 3240-3244.	1.4	178
44	Enzymatic activation of endothelial protease-activated receptors is dependent on artery diameter in human and porcine isolated coronary arteries. British Journal of Pharmacology, 2002, 136, 492-501.	5.4	21
45	Protease-Activated Receptor (PAR) 1 but Not PAR2 or PAR4 Mediates Endothelium-Dependent Relaxation to Thrombin and Trypsin in Human Pulmonary Arteries. Journal of Cardiovascular Pharmacology, 2001, 38, 108-119.	1.9	52
46	Increased Expression of Protease-Activated Receptor-2 (PAR2) and PAR4 in Human Coronary Artery by Inflammatory Stimuli Unveils Endothelium-Dependent Relaxations to PAR2 and PAR4 Agonists. Circulation Research, 2001, 89, 92-98.	4.5	138
47	Heterogeneous mechanisms of endothelium-dependent relaxation for thrombin and peptide activators of protease-activated receptor-1 in porcine isolated coronary artery. British Journal of Pharmacology, 2000, 130, 181-188.	5.4	46
48	Protease-activated receptor-2 turnover stimulated independently of receptor activation in porcine coronary endothelial cells. British Journal of Pharmacology, 1999, 127, 617-622.	5.4	16
49	Atypical Protease-Activated Receptor Mediates Endothelium-Dependent Relaxation of Human Coronary Arteries. Circulation Research, 1998, 82, 1306-1311.	4.5	73
50	Degranulation enhances release of a stable contractile factor from rabbit polymorphonuclear leukocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1545-H1551.	3.2	3