Peng-Yu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1223028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	YAP-dependent proliferation by a small molecule targeting annexin A2. Nature Chemical Biology, 2021, 17, 767-775.	8.0	31
2	New Generation Oxyntomodulin Peptides with Improved Pharmacokinetic Profiles Exhibit Weight Reducing and Anti-Steatotic Properties in Mice. Bioconjugate Chemistry, 2020, 31, 1167-1176.	3.6	21
3	Photoactivatable Fluorogenic Labeling via Turnâ€On "Clickâ€Like―Nitrosoâ€Diene Bioorthogonal Reaction. Advanced Science, 2019, 6, 1802039.	11.2	12
4	Design and Synthesis of Potent, Long-Acting Lipidated Relaxin-2 Analogs. Bioconjugate Chemistry, 2019, 30, 83-89.	3.6	19
5	Rapeseed Protein-Derived Antioxidant Peptide RAP Ameliorates Nonalcoholic Steatohepatitis and Related Metabolic Disorders in Mice. Molecular Pharmaceutics, 2019, 16, 371-381.	4.6	13
6	Stapled, Long-Acting Glucagon-like Peptide 2 Analog with Efficacy in Dextran Sodium Sulfate Induced Mouse Colitis Models. Journal of Medicinal Chemistry, 2018, 61, 3218-3223.	6.4	37
7	Cenetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nature Chemical Biology, 2017, 13, 845-849.	8.0	105
8	Multifunctional Antibody Agonists Targeting Glucagonâ€like Peptideâ€1, Glucagon, and Glucoseâ€Dependent Insulinotropic Polypeptide Receptors. Angewandte Chemie - International Edition, 2016, 55, 12475-12478.	13.8	19
9	Multifunctional Antibody Agonists Targeting Glucagonâ€like Peptideâ€1, Glucagon, and Glucoseâ€Dependent Insulinotropic Polypeptide Receptors. Angewandte Chemie, 2016, 128, 12663-12666.	2.0	2
10	Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angewandte Chemie - International Edition, 2016, 55, 7520-7524.	13.8	92
11	Design of Potent and Proteolytically Stable Oxyntomodulin Analogs. ACS Chemical Biology, 2016, 11, 324-328.	3.4	35
12	Recombinant thiopeptides containing noncanonical amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3615-3620.	7.1	58
13	Engineering a long-acting, potent GLP-1 analog for microstructure-based transdermal delivery. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4140-4145.	7.1	51
14	Activityâ€Based Protein Profiling: Recent Advances in Probe Development and Applications. ChemBioChem, 2015, 16, 712-724.	2.6	64
15	Genetic Incorporation of Histidine Derivatives Using an Engineered Pyrrolysyl-tRNA Synthetase. ACS Chemical Biology, 2014, 9, 1092-1096.	3.4	65
16	Modulation of Fatty Acid Synthase Enzyme Activity and Expression during Hepatitis C Virus Replication. Chemistry and Biology, 2013, 20, 570-582.	6.0	71
17	Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2510-7.	7.1	188
18	A Tryptophanylâ€ŧRNA Synthetase/tRNA Pair for Unnatural Amino Acid Mutagenesis in <i>E.â€coli</i> . Angewandte Chemie - International Edition, 2013, 52, 5106-5109.	13.8	44

Peng-Yu Yang

#	Article	IF	CITATIONS
19	A Small Molecule Promotes Mitochondrial Fusion in Mammalian Cells. Angewandte Chemie - International Edition, 2012, 51, 9302-9305.	13.8	126
20	Proteomic profiling and potential cellular target identification of K11777, a clinical cysteine protease inhibitor, in Trypanosoma brucei. Chemical Communications, 2012, 48, 835-837.	4.1	49
21	Design, Synthesis and Biological Evaluation of Potent Azadipeptide Nitrile Inhibitors and Activityâ€Based Probes as Promising Antiâ€ <i>Trypanosoma brucei</i> Agents. Chemistry - A European Journal, 2012, 18, 6528-6541.	3.3	49
22	Parasiteâ€Based Screening and Proteome Profiling Reveal Orlistat, an FDAâ€Approved Drug, as a Potential Anti Trypanosoma brucei Agent []. Chemistry - A European Journal, 2012, 18, 8403-8413.	3.3	16
23	A Peptide Aldehyde Microarray for High-Throughput Profiling of Cellular Events. Journal of the American Chemical Society, 2011, 133, 1946-1954.	13.7	47
24	Multicolor, One- and Two-Photon Imaging of Enzymatic Activities in Live Cells with Fluorescently Quenched Activity-Based Probes (qABPs). Journal of the American Chemical Society, 2011, 133, 12009-12020.	13.7	124
25	Chemical Modification and Organelleâ€6pecific Localization of Orlistatâ€Like Naturalâ€Productâ€Based Probes. Chemistry - an Asian Journal, 2011, 6, 2762-2775.	3.3	36
26	Dynamic Monitoring of Newly Synthesized Proteomes: Upâ€Regulation of Myristoylated Protein Kinase A During Butyric Acid Induced Apoptosis. Angewandte Chemie - International Edition, 2011, 50, 6776-6781.	13.8	14
27	Activity-Based Proteome Profiling of Potential Cellular Targets of Orlistat â^' An FDA-Approved Drug with Anti-Tumor Activities. Journal of the American Chemical Society, 2010, 132, 656-666.	13.7	214
28	Click-based synthesis and proteomic profiling of lipstatin analogues. Chemical Communications, 2010, 46, 8335.	4.1	49
29	High-throughput synthesis of azide libraries suitable for direct "click―chemistry and in situ screening. Organic and Biomolecular Chemistry, 2009, 7, 1821.	2.8	56
30	High-Throughput Discovery of Mycobacterium tuberculosis Protein Tyrosine Phosphatase B (MptpB) Inhibitors Using Click Chemistry. Organic Letters, 2009, 11, 5102-5105.	4.6	64
31	Palladium-catalyzed aminations of aryl halides with phosphine-functionalized imidazolium ligands. Dalton Transactions, 2008, , 938-945.	3.3	22
32	Solid-Phase Synthesis of Azidomethylene Inhibitors Targeting Cysteine Proteases. Organic Letters, 2008, 10, 1881-1884.	4.6	12
33	"Click―synthesis of small-molecule inhibitors targeting caspases. Organic and Biomolecular Chemistry, 2008, 6, 844.	2.8	28
34	Click Chemistry as a Highâ€Throughput Amenable Platform in Catalomics. QSAR and Combinatorial Science, 2007, 26, 1135-1144.	1.4	25
35	Unsymmetric-1,3-disubstituted imidazolium salt for palladium-catalyzed Suzuki–Miyaura cross-coupling reactions of aryl bromides. Journal of Molecular Catalysis A, 2006, 250, 15-19	4.8	22
36	Highly efficient and stable palladium/imidazolium salt-phosphine catalysts for Suzuki–Miyaura cross-coupling of aryl bromides. Journal of Molecular Catalysis A, 2006, 259, 7-10.	4.8	43

Peng-Yu Yang

#	Article	IF	CITATIONS
37	Synthesis and Highly Enantioselective Hydrogenation of Exocyclic Enamides: (Z)-3-Arylidene-4-acetyl-3,4-dihydro-2H-1,4-benzoxazines ChemInform, 2005, 36, no.	0.0	0
38	Synthesis and Highly Enantioselective Hydrogenation of Exocyclic Enamides: (Z)-3-Arylidene-4-acetyl-3,4-dihydro-2H- 1,4-benzoxazines. Journal of Organic Chemistry, 2005, 70, 1679-1683.	3.2	69
39	Study on Conformation Interconversion of 3-Alkyl-4-acetyl-3,4-dihydro-2H-1,4-benzoxazines from Dynamic NMR Experiments and ab Initio Density Functional Calculations. Journal of Physical Chemistry B, 2005, 109, 18690-18698.	2.6	12
40	Highly Enantioselective Iridium-Catalyzed Hydrogenation of Heteroaromatic Compounds: Quinolines ChemInform, 2004, 35, no.	0.0	0
41	The enantioselective total synthesis of alkaloid (â^')-galipeine. Tetrahedron: Asymmetry, 2004, 15, 1145-1149.	1.8	95
42	Highly Enantioselective Iridium-Catalyzed Hydrogenation of Heteroaromatic Compounds, Quinolines. Journal of the American Chemical Society, 2003, 125, 10536-10537.	13.7	517