Rong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1222960/publications.pdf

Version: 2024-02-01

218 papers 6,689 citations

66343 42 h-index 72 g-index

219 all docs

219 docs citations

times ranked

219

8645 citing authors

#	Article	IF	CITATIONS
1	Dictating catalytic performance of platinum-iron nanoparticle by regulating its heterogeneous interface and stability. Journal of Colloid and Interface Science, 2022, 608, 1463-1470.	9.4	3
2	Boosting visible light photocatalysis in an Au@TiO2 yolk-in-shell nanohybrid. Applied Catalysis B: Environmental, 2022, 303, 120869.	20.2	39
3	Gold nanorod@void@polypyrrole yolk@shell nanostructures: Synchronous regulation of photothermal and drug delivery performance for synergistic cancer therapy. Journal of Colloid and Interface Science, 2022, 610, 89-97.	9.4	10
4	Magnetic response Janus emulsions stabilized by Mangeto-surfactant. Journal of Molecular Liquids, 2022, 349, 118416.	4.9	5
5	Responsive emulsions with Janus topology constructed by magneto-surfactants and remote control of emulsion stability. Jcis Open, 2022, 5, 100043.	3.2	1
6	Lubrication performance of MXene/Brij30/H2O composite lamellar liquid crystal system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128487.	4.7	4
7	Spray-On Carbon Black Nanopowder/Polyvinylidene Fluoride-Based Solar–Thermal–Electric Generators to Power Electronic Devices. ACS Applied Nano Materials, 2022, 5, 2429-2435.	5.0	4
8	Brij 30 Induced Transition of Rodlike Micelles to Wormlike Micelles and Gels in the Imidazole Ionic Liquid Surfactants: The Alkyl Chain Length Effect. Langmuir, 2022, 38, 3051-3063.	3.5	4
9	Supramolecular Core–Shell Nanoassemblies with Tumor Microenvironmentâ€Triggered Size and Structure Switch for Improved Photothermal Therapy. Small, 2022, 18, e2200588.	10.0	8
10	Anisotropic droplets with uniform internal structure prepared in batch-scale by combination of vortex mixing and phase separation. Journal of Molecular Liquids, 2022, 361, 119616.	4.9	2
11	Boosting solar-to-pyroelectric energy harvesting via a plasmon-enhanced solar-thermal conversion approach. Nano Energy, 2022, 100, 107527.	16.0	18
12	Polyaniline-Based Rose-like Chiral Nanostructures for Raman Enhancement. ACS Applied Nano Materials, 2022, 5, 9910-9919.	5.0	5
13	Construction of core-in-shell Au@N-HCNs nanozymes for tumor therapy. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112671.	5.0	10
14	Demulsification of (W1 +W2 +W3)/O reverse Cerberus emulsion from vibrational emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129623.	4.7	3
15	Construction and regulation of aqueous-based Cerberus droplets by vortex mixing. Journal of Colloid and Interface Science, 2022, 627, 194-204.	9.4	3
16	Photothermal supramolecular vesicles coassembled from pillar[5]arene and aniline tetramer for tumor eradication in NIR-I and NIR-II biowindows. Chemical Engineering Journal, 2021, 403, 126423.	12.7	20
17	Destabilization mechanism of $(W1+W2)/O$ reverse Janus emulsions. Journal of Colloid and Interface Science, 2021, 585, 205-216.	9.4	12
18	Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic. Chemical Communications, 2021, 57, 3399-3402.	4.1	8

#	Article	IF	Citations
19	Benzoate ester as a new species for supramolecular chiral assembly. Soft Matter, 2021, 17, 5137-5147.	2.7	1
20	Platinum–Copper Bimetallic Colloid Nanoparticle Cluster Nanozymes with Multiple Enzyme-like Activities for Scavenging Reactive Oxygen Species. Langmuir, 2021, 37, 7364-7372.	3.5	37
21	Lubrication and Dynamically Controlled Drug Release Properties of Tween 85/Tween 80/H ₂ O Lamellar Liquid Crystals. Langmuir, 2021, 37, 7067-7077.	3.5	10
22	Chiral Supramolecular Polymers Assembled by Amphiphilic Oligopeptide-Perylene Diimides and High Electrochemical Sensing. Langmuir, 2021, 37, 9232-9243.	3.5	7
23	Rational design of dumbbell-like Au-Fe3O4@Carbon yolk@shell nanospheres with superior catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126665.	4.7	7
24	Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: A single nanozyme mimicking multi-enzymatic cascade systems in peroxisome. Journal of Colloid and Interface Science, 2021, 600, 37-48.	9.4	24
25	Hierarchical self-assemblies of carnosine asymmetrically functioned perylene diimide with high optoelectronic response. Journal of Colloid and Interface Science, 2021, 601, 746-757.	9.4	10
26	Fe, P, N- and FeP, N-doped carbon hollow nanospheres: A comparison study toward oxygen reduction reaction electrocatalysts. Journal of Colloid and Interface Science, 2021, 602, 376-383.	9.4	27
27	N-, P-, and O-Tridoped Carbon Hollow Nanospheres with Openings in the Shell Surfaces: A Highly Efficient Electrocatalyst toward the ORR. Langmuir, 2021, 37, 2001-2010.	3.5	14
28	Multi-Yolkâ€"Shell MnO@Carbon Nanopomegranates with Internal Buffer Space as a Lithium Ion Battery Anode. Langmuir, 2021, 37, 2195-2204.	3.5	22
29	The transition of rodlike micelles to wormlike micelles of an ionic liquid surfactant induced by different additives and the template-directed synthesis of calcium oxalate monohydrate to mimic the formation of urinary stones. Colloid and Polymer Science, 2021, 299, 1991-2002.	2.1	1
30	Hybrid shells of N-doped carbon encapsulated by MnO nanoparticles as oxygen reduction reaction electrocatalysts. New Journal of Chemistry, 2020, 44, 580-585.	2.8	15
31	TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p–n heterojunctions towards efficient photocatalysis. Journal of Colloid and Interface Science, 2020, 562, 313-321.	9.4	87
32	A Mini Review on Yolk-Shell Structured Nanocatalysts. Frontiers in Chemistry, 2020, 8, 606044.	3.6	25
33	Influence of the Alkyl Chain Length of the Imidazole Ionic Liquid-Type Surfactants on Their Aggregation Behavior with Sodium Dodecyl Sulfate. Langmuir, 2020, 36, 10494-10503.	3.5	17
34	Protein-mediated sponge-like copper sulfide as an ingenious and efficient peroxidase mimic for colorimetric glucose sensing. RSC Advances, 2020, 10, 28819-28826.	3.6	9
35	Protein-mediated wool-ball-like copper sulfide as a multifunctional nanozyme for dual fluorescence "turn-on―sensors of cysteine and silver ions. Journal of Materials Chemistry B, 2020, 8, 9075-9083.	5.8	12
36	Amphiphilic protein controlled synthesis of rice-shaped copper oxide and its substrate dependent enzyme-mimicking activity. Journal of Dispersion Science and Technology, 2020, , 1-12.	2.4	1

#	Article	IF	CITATIONS
37	High-efficiency platinum–carbon nanozyme for photodynamic and catalytic synergistic tumor therapy. Chemical Engineering Journal, 2020, 399, 125797.	12.7	35
38	Electrodeposition-Assisted Rapid Preparation of Pt Nanocluster/3D Graphene Hybrid Nanozymes with Outstanding Multiple Oxidase-Like Activity for Distinguishing Colorimetric Determination of Dihydroxybenzene Isomers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15553-15561.	8.0	37
39	Controlled Group Motion of Anisotropic Janus Droplets Prepared by One-Step Vortex Mixing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14588-14598.	8.0	27
40	Yolk–shell or yolk-in-shell nanocatalysts? A proof-of-concept study. Journal of Materials Chemistry A, 2020, 8, 10217-10225.	10.3	14
41	Improved ordering and lubricating properties using graphene in lamellar liquid crystals of Triton X-100/C _n mimNTf ₂ /H ₂ O. Soft Matter, 2020, 16, 2031-2038.	2.7	8
42	One-Pot Synthesis of Fe/N-Doped Hollow Carbon Nanospheres with Multienzyme Mimic Activities against Inflammation. ACS Applied Bio Materials, 2020, 3, 1147-1157.	4.6	39
43	Self-Assembled Dual Helical Nanofibers of Amphiphilic Perylene Diimides with Oligopeptide Substitution. Langmuir, 2019, 35, 11745-11754.	3.5	13
44	Temperature and composition induced morphology transition of Cerberus emulsion droplets. Journal of Colloid and Interface Science, 2019, 554, 210-219.	9.4	10
45	Janus emulsions formed with organic solvents as inner phases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123947.	4.7	15
46	A one-pot and modular self-assembly strategy for high-performance organized enzyme cascade bioplatforms based on dual-functionalized protein–PtNP@mesoporous iron oxide hybrid. Journal of Materials Chemistry B, 2019, 7, 43-52.	5.8	17
47	Dumbbell-like Pt–Fe ₃ O ₄ Nanoparticles Encapsulated in N-Doped Carbon Hollow Nanospheres as a Novel Yolk@Shell Nanostructure toward High-Performance Nanocatalysis. Langmuir, 2019, 35, 12704-12710.	3.5	35
48	Batch-Scale Preparation of Reverse Janus Emulsions. Langmuir, 2019, 35, 3490-3497.	3.5	28
49	Carbon/TiO ₂ /Fe ₂ O ₃ hybrid shells as efficient visible light photocatalysts. New Journal of Chemistry, 2019, 43, 11282-11287.	2.8	14
50	Pomegranate-like multicore–shell Mn ₃ O ₄ encapsulated mesoporous N-doped carbon nanospheres with an internal void space for high-performance lithium-ion batteries. Chemical Communications, 2019, 55, 8064-8067.	4.1	33
51	Nanozymes: Highâ€Performance Integrated Enzyme Cascade Bioplatform Based on Protein–BiPt Nanochain@Graphene Oxide Hybrid Guided Oneâ€Pot Selfâ€Assembly Strategy (Small 12/2019). Small, 2019, 15, 1970064.	10.0	2
52	Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Advances, 2019, 9, 8753-8758.	3.6	20
53	Microstructure and Tribological Properties of Lamellar Liquid Crystals Formed by Ionic Liquids as Cosurfactants. Langmuir, 2019, 35, 4037-4045.	3.5	13
54	Highâ€Performance Integrated Enzyme Cascade Bioplatform Based on Protein–BiPt Nanochain@Graphene Oxide Hybrid Guided Oneâ€Pot Selfâ€Assembly Strategy. Small, 2019, 15, e1804987.	10.0	25

#	Article	IF	CITATIONS
55	Chiral Polyaniline Hollow Nanotwists toward Efficient Enantioselective Separation of Amino Acids. ACS Nano, 2019, 13, 3534-3544.	14.6	80
56	Tumor Catalytic–Photothermal Therapy with Yolk–Shell Gold@Carbon Nanozymes. ACS Applied Materials & Discrete Representation (1988) and Provided Represe	8.0	130
57	Viscoelastic wormlike micelles formed by ionic liquid-type surfactant [C ₁₆ imC ₈]Br towards template-assisted synthesis of CdS quantum dots. Soft Matter, 2018, 14, 789-796.	2.7	13
58	Improvement in lubricating properties of TritonX-100/n-C 10 H 21 OH/H 2 O lamellar liquid crystals with the amphiphilic ionic liquid 1-alkyl-3-methylimidazolium hexafluorophosphate. Journal of Colloid and Interface Science, 2018, 522, 200-207.	9.4	14
59	Controllable Synthesis of Gold Nanorod/Conducting Polymer Core/Shell Hybrids Toward in Vitro and in Vivo near-Infrared Photothermal Therapy. ACS Applied Materials & Diterfaces, 2018, 10, 12323-12330.	8.0	53
60	Gold Nanorods/Polypyrrole/m-SiO ₂ Core/Shell Hybrids as Drug Nanocarriers for Efficient Chemo-Photothermal Therapy. Langmuir, 2018, 34, 14661-14669.	3.5	43
61	Hybrid shells of MnO2 nanosheets encapsulated by N-doped carbon towards nonprecious oxygen reduction reaction catalysts. Journal of Colloid and Interface Science, 2018, 527, 241-250.	9.4	35
62	Doped Nanocarbons Derived from Conducting Polymers toward ORR Electrocatalysts. Advanced Sustainable Systems, 2018, 2, 1800033.	5.3	5
63	Effect of hydrophilically modified ibuprofen on thermoresponsive gelation of pluronic copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 1-10.	4.7	12
64	Double-shell SnO ₂ /CeO ₂ :Yb,Er hollow nanospheres as an assistant layer that suppresses charge recombination in dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 14453-14458.	2.8	8
65	Anisotropic Particles Templated by Cerberus Emulsions. Langmuir, 2018, 34, 7386-7395.	3.5	24
66	Controllable Supramolecular Chiral Twisted Nanoribbons from Achiral Conjugated Oligoaniline Derivatives. Journal of the American Chemical Society, 2018, 140, 9417-9425.	13.7	62
67	Single, Janus, and Cerberus emulsions from the vibrational emulsification of oils with significant mutual solubility. Soft Matter, 2017, 13, 1012-1019.	2.7	20
68	Amino acid-mediated †turn-off/turn-on†nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosensors and Bioelectronics, 2017, 92, 140-146.	10.1	144
69	Fe ₃ O ₄ @PANI Hybrid Shell as a Multifunctional Support for Au Nanocatalysts with a Remarkably Improved Catalytic Performance. Langmuir, 2017, 33, 4520-4527.	3.5	46
70	Halide Ion-Induced Switching of Gold Nanozyme Activity Based on Au–X Interactions. Langmuir, 2017, 33, 6372-6381.	3.5	45
71	Janus Particles Templated by Janus Emulsions and Application as a Pickering Emulsifier. Langmuir, 2017, 33, 5819-5828.	3.5	63
72	Mesoporous C, N-codoped TiO ₂ hybrid shells with enhanced visible light photocatalytic performance. RSC Advances, 2017, 7, 15513-15520.	3.6	69

#	Article	IF	CITATIONS
73	Fe ₃ O ₄ /PANI/MnO ₂ core–shell hybrids as advanced adsorbents for heavy metal ions. Journal of Materials Chemistry A, 2017, 5, 4058-4066.	10.3	99
74	Switching Peroxidase-Mimic Activity of Protein Stabilized Platinum Nanozymes by Sulfide Ions: Substrate Dependence, Mechanism, and Detection. Langmuir, 2017, 33, 13811-13820.	3.5	53
75	Implantation of Fe ₃ O ₄ Nanoparticles in Shells of Au@ <i>m</i> -SiO ₂ Yolk@Shell Nanocatalysts with Both Improved Recyclability and Catalytic Activity. Langmuir, 2017, 33, 7486-7493.	3.5	34
76	Hierarchical AuNPs-Loaded Fe3O4/Polymers Nanocomposites Constructed by Electrospinning with Enhanced and Magnetically Recyclable Catalytic Capacities. Nanomaterials, 2017, 7, 317.	4.1	34
77	Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Advances, 2016, 6, 112435-112444.	3.6	33
78	Aqueous Solution-Based Fe ₃ O ₄ Seed-Mediated Route to Hydrophilic Fe ₃ O ₄ a€"Au Janus Nanoparticles. Langmuir, 2016, 32, 4595-4601.	3.5	46
79	Coalescence of Janus droplets prepared by one-step vibrational mixing. Colloid and Polymer Science, 2016, 294, 1815-1821.	2.1	8
80	Carbon-Incorporated NiO/TiO ₂ Mesoporous Shells with pâ€"n Heterojunctions for Efficient Visible Light Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29511-29521.	8.0	116
81	Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon, 2016, 107, 629-637.	10.3	130
82	Metallosurfactants C n –Cu–C n : vesicle formation and its drug-controlled release properties. Colloid and Polymer Science, 2016, 294, 841-849.	2.1	17
83	Recent studies of Janus emulsions prepared by one-step vibrational mixing. Current Opinion in Colloid and Interface Science, 2016, 25, 58-66.	7.4	27
84	NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: In-situ synthesis and enhanced capacitive performance. Journal of Colloid and Interface Science, 2016, 477, 46-53.	9.4	84
85	O/W interface-assisted hydrothermal synthesis of NiCo2S4 hollow spheres for high-performance supercapacitors. Colloid and Polymer Science, 2016, 294, 1325-1332.	2.1	16
86	A novel sensitive electrochemical sensor for lead ion based on three-dimensional graphene/sodium dodecyl benzene sulfonate hemimicelle nanocomposites. Electrochimica Acta, 2016, 212, 147-154.	5.2	40
87	Surface cavities of Ni(OH) ₂ nanowires can host Au nanoparticles as supported catalysts with high catalytic activity and stability. Journal of Materials Chemistry A, 2016, 4, 2590-2596.	10.3	15
88	In-situ controllable growth of \hat{I} ±-Ni(OH)2 with different morphologies on reduced graphene oxide sheets and capacitive performance for supercapacitors. Colloid and Polymer Science, 2016, 294, 681-689.	2.1	30
89	Mesoporous Hybrid Shells of Carbonized Polyaniline/Mn ₂ O ₃ as Non-Precious Efficient Oxygen Reduction Reaction Catalyst. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6040-6050.	8.0	103
90	Adsorption Behavior of Low-Concentration Imidazolium-Based Ionic Liquid Surfactant on Silica Nanoparticles. Langmuir, 2016, 32, 2582-2590.	3.5	24

#	Article	IF	CITATIONS
91	Fabrication of calcium oxalate with novel hierarchical structures mediated by amphiphilic phosphoproteins and its adsorptive removal of Congo red from aqueous solution. RSC Advances, 2015, 5, 83486-83493.	3.6	1
92	Enhanced Anticancer Cells Effects of Optimized Suspension Stable As ₂ O ₃ â€Loaded Poly(lacticâ€coâ€glycolic acid) Nanocapsules. Chinese Journal of Chemistry, 2015, 33, 777-784.	4.9	4
93	Controlled synthesis of tower-like aniline oligomers with excellent adsorption properties. New Journal of Chemistry, 2015, 39, 2202-2208.	2.8	10
94	Yolk@Shell Nanoarchitecture of Au@r-GO/TiO ₂ Hybrids as Powerful Visible Light Photocatalysts. Langmuir, 2015, 31, 6220-6228.	3.5	113
95	Concentration and temperature induced dual-responsive wormlike micelle to hydrogel transition in ionic liquid-type surfactant [C ₁₆ imC ₉]Br aqueous solution without additives. Soft Matter, 2015, 11, 5624-5631.	2.7	38
96	Anisotropic particles templated by Janus emulsion. Chemical Communications, 2015, 51, 7432-7434.	4.1	37
97	Template-free synthesis of Ni ₇ S ₆ hollow spheres with mesoporous shells for high performance supercapacitors. CrystEngComm, 2015, 17, 1952-1958.	2.6	69
98	Nanostructured Hybrid Shells of r-GO/AuNP/ <i>m</i> r-TiO ₂ as Highly Active Photocatalysts. ACS Applied Materials & https://www.photocatalysts.acs.acs.acs.acs.acs.acs.acs.acs.acs.ac	8.0	84
99	Ethanol-guided synthesis of (flower-on-leaf)-like aniline oligomers with excellent adsorption properties. New Journal of Chemistry, 2015, 39, 9257-9264.	2.8	10
100	Impact of Alkyl Chain Length on the Transition of Hexagonal Liquid Crystal–Wormlike Micelle–Gel in Ionic Liquid-Type Surfactant Aqueous Solutions without Any Additive. Langmuir, 2015, 31, 12618-12627.	3.5	33
101	TiO ₂ /NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. Journal of Materials Chemistry A, 2015, 3, 20727-20735.	10.3	154
102	Janus emulsions formed with a polymerizable monomer, silicone oil, and Tween 80 aqueous solution. Journal of Colloid and Interface Science, 2014, 423, 108-112.	9.4	27
103	Preparation and investigation of arsenic trioxide-loaded polylactic acid/magnetic hybrid nanoparticles. Chemical Research in Chinese Universities, 2014, 30, 326-332.	2.6	18
104	Micellization behavior of the ionic liquid lauryl isoquinolinium bromide in aqueous solution. Colloid and Polymer Science, 2014, 292, 1111-1120.	2.1	16
105	An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosensors and Bioelectronics, 2014, 52, 391-396.	10.1	112
106	Fe ₃ O ₄ /PANI/m-SiO ₂ as robust reactive catalyst supports for noble metal nanoparticles with improved stability and recyclability. Journal of Materials Chemistry A, 2014, 2, 13016-13023.	10.3	43
107	Beyond yolk–shell nanostructure: a single Au nanoparticle encapsulated in the porous shell of polymer hollow spheres with remarkably improved catalytic efficiency and recyclability. Chemical Communications, 2014, 50, 8295-8298.	4.1	49
108	Calcium oxalate crystallization in the presence of amphiphilic phosphoproteins. CrystEngComm, 2014, 16, 8841-8851.	2.6	11

#	Article	IF	CITATIONS
109	Droplet topology control of Janus emulsion prepared in one-step high energy mixing. Soft Matter, 2014, 10, 4498-4505.	2.7	37
110	Reactive template strategy for fabrication of MnO2/polyaniline coaxial nanocables and their catalytic application in the oxidative decolorization of rhodamine B. Journal of Materials Chemistry A, 2013, 1, 13197.	10.3	42
111	Core–shell to yolk–shell nanostructure transformation by a novel sacrificial template-free strategy. Chemical Communications, 2013, 49, 11566.	4.1	27
112	Dilute cationic surfactant-assisted synthesis of polyaniline nanotubes and application as reactive support for various noble metal nanocatalysts. Polymer Chemistry, 2013, 4, 313-321.	3.9	37
113	Interaction between \hat{l}^2 -casein micelles and imidazolium-based ionic liquid surfactant. Soft Matter, 2013, 9, 3671.	2.7	29
114	Microstructure transition of hydrophilic modified ibuprofen and Pluronic copolymer F127 complexes. Colloid and Polymer Science, 2013, 291, 1255-1265.	2.1	5
115	Pd@aluminium foil: a highly efficient and environment-friendly "tea bag―style catalyst with high TON. Catalysis Science and Technology, 2012, 2, 1136.	4.1	23
116	Carbon-nanoparticles encapsulated in hollow nickel oxides for supercapacitor application. Journal of Materials Chemistry, 2012, 22, 16376.	6.7	154
117	Interenzyme Substrate Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA Nanostructures. Journal of the American Chemical Society, 2012, 134, 5516-5519.	13.7	623
118	Pd-Nanoparticle (PdNP)-catalyzed Negishi Coupling of Acid Chlorides using Zinc Reagents. Organic Preparations and Procedures International, 2012, 44, 169-174.	1.3	4
119	Calcium Carbonate Crystallization in the Presence of Casein. Crystal Growth and Design, 2012, 12, 4720-4726.	3.0	41
120	Reactive polyaniline-supported sub-10 nm noble metal nanoparticles protected by a mesoporous silica shell: controllable synthesis and application as efficient recyclable catalysts. Journal of Materials Chemistry, 2012, 22, 5932.	6.7	39
121	Ultrathin MnO ₂ Nanorods on Conducting Polymer Nanofibers as a New Class of Hierarchical Nanostructures for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2012, 116, 15900-15907.	3.1	102
122	Metal Triflate–Catalyzed Se-Se Bond Cleavage and the Selective Additions Under Mild Conditions. Synthetic Communications, 2011, 41, 1958-1968.	2.1	7
123	Interphase Transport in an Emulsion: Tartaric Acid. Journal of Dispersion Science and Technology, 2011, 32, 741-748.	2.4	0
124	Interactions of Hemoglobin with Vesicles and Tubes Formed from Mixtures of Histidine-Derived Bolaamphiphile and Conventional Surfactants. Journal of Solution Chemistry, 2011, 40, 48-60.	1.2	8
125	Effect of Cyclodextrins on the Interaction Between BSA and Sodium Dodecyl Benzene Sulfonate. Journal of Solution Chemistry, 2011, 40, 1140-1152.	1.2	9
126	Recent Advances on the Preparation and Reactivity of Methylenecyclopropanes. Organic Preparations and Procedures International, 2011, 43, 209-259.	1.3	90

#	Article	IF	Citations
127	Reaction of Methylenecyclobutanes with NXS-H2O System. Synthetic Communications, 2011, 41, 3237-3245.	2.1	8
128	Cerium(IV) Ammonium Nitrate–Mediated Oxidation of Mono-aryl-substituted Methylenecyclobutanes: A Convenient Method for the Synthesis of Spirocyclobutyl-1,2-dioxethanes. Synthetic Communications, 2011, 41, 2530-2538.	2.1	15
129	Interphase Transport in a Salicylic Acid Emulsion. Journal of Dispersion Science and Technology, 2011, 32, 283-290.	2.4	O
130	Viscosity Variation During Evaporation of a Vegetable Oil Emulsion Stabilized by Tween 80R. Journal of Dispersion Science and Technology, 2011, 32, 141-149.	2.4	0
131	Stability versus phase ratios of geranyl acetate three-phase emulsions. Colloid and Polymer Science, 2010, 288, 423-431.	2.1	O
132	Initial inter-phase transport of compounds in a model emulsion system. Colloid and Polymer Science, 2010, 288, 479-486.	2.1	3
133	Constant vapour pressure evaporation from a fragrance emulsion—effect of surfactant content in the liquid crystal. Canadian Journal of Chemical Engineering, 2010, 88, 165-171.	1.7	1
134	Fluorescence quenching of anthracene by N, N-diethylaniline in the O/W microemulsion. Chinese Journal of Chemistry, 2010, 18 , $801-807$.	4.9	1
135	Hydrolysis of cephanone in SDS/n-C5H11OH/H2O system. Chinese Journal of Chemistry, 2010, 21, 1284-1289.	4.9	1
136	Effect of oligonucleotide conformation on its facilitation efficiency on negatively charged micelleâ€toâ€vesicle transition. Journal of Polymer Science Part A, 2010, 48, 852-860.	2.3	11
137	A versatile surfactantâ€mediated synthetic route to gold/polyaniline derivative core/shell nanocomposites. Journal of Polymer Science Part A, 2010, 48, 3903-3912.	2.3	17
138	Transfer and distribution of methylene blue through w/o–o/w and w/o–bicontinuous interface. Physics and Chemistry of Liquids, 2010, 48, 307-315.	1.2	2
139	Comparison of the Surface Dilational Properties of Block Copolymers and Sodium Oleate Using the Oscillating Bubble Method. Journal of Dispersion Science and Technology, 2010, 31, 727-734.	2.4	0
140	Brâ^-Induced Facile Fabrication of Spongelike Gold/Amino Acid Nanocomposites and Their Applications in Surface-Enhanced Raman Scattering. Langmuir, 2010, 26, 13479-13485.	3.5	22
141	Novel Approach to Controllable Synthesis of Gold Nanoparticles Supported on Polyaniline Nanofibers. Macromolecules, 2010, 43, 10636-10644.	4.8	158
142	Enhancement of Wormlike Micellar Structure Induced by <i>O</i> -Carboxymethylchitosan with or without Hydrophobic Modifications. Journal of Chemical & Engineering Data, 2010, 55, 5023-5030.	1.9	6
143	Emulsion Inversion in the PIT Range: Quantitative Phase Variations in a Two-Phase Emulsionâ€. Journal of Chemical & Emulsiona (1998) and the PIT Range (1998) and the PIT Range: Quantitative Phase Variations in a Two-Phase Emulsiona (1998) and the PIT Range: Quantitative Phase Variations in a Two-Phase Emulsiona (1998) and the PIT Range: Quantitative Phase Variations in a Two-Phase Emulsiona (1998) and the PIT Range: Quantitative Phase Variations in a Two-Phase Emulsiona (1998) and the PIT Range: Quantitative Phase Variations in a Two-Phase Emulsiona (1998) and the PIT Range: Quantitative Phase Variations in a Two-Phase Emulsiona (1998) and the PIT Range (1998) a	1.9	4
144	Microstructure of lamellar liquid crystal in Tween 85/[Bmim]PF ₆ /H ₂ O system and applications as Ag nanoparticle synthesis and lubrication. Journal of Materials Research, 2009, 24, 333-341.	2.6	14

#	Article	IF	Citations
145	Constant vapour pressure evaporation from a fragrance emulsionâ€"effect of solubility of surfactant in the fragrance compound. Flavour and Fragrance Journal, 2009, 24, 7-12.	2.6	9
146	A simple oneâ€step chemical route to gold/polymer core/shell composites and polymer hollow spheres. Journal of Applied Polymer Science, 2009, 112, 1244-1249.	2.6	14
147	Synthesis of polyaniline nanostructures in different lamellar liquid crystals and application to lubrication. Journal of Materials Science, 2009, 44, 715-720.	3.7	32
148	Studies on the Interactions Between Genistein andÂCopolymer F127. Journal of Solution Chemistry, 2009, 38, 1588-1600.	1,2	7
149	Facilitation effect of oligonucleotide on vesicle formation from singleâ€chained cationic surfactant—Dependences of oligonucleotide sequence and size and surfactant structure. Journal of Polymer Science Part A, 2009, 47, 434-449.	2.3	10
150	PEG-Induced Lamellar-to-Isotropic Phase Transition in the System of TX-100/n-C8H17OH/H2O. Journal of Physical Chemistry B, 2009, 113, 1993-2000.	2.6	14
151	Evaporation in the Water, Polyethylene Oxide, and Polypropylene Oxide System. Journal of Dispersion Science and Technology, 2009, 30, 903-911.	2.4	2
152	Facile Synthesis of Highly Stable Gold Nanoparticles and Their Unexpected Excellent Catalytic Activity for Suzukiâ^'Miyaura Cross-Coupling Reaction in Water. Journal of the American Chemical Society, 2009, 131, 2060-2061.	13.7	335
153	Synthesis and structure of a Schiff base and its bivalent transition metal complexes. Journal of Coordination Chemistry, 2009, 62, 3488-3499.	2.2	9
154	Effects of pH and Micelle on the Radical Scavenging Ability of Puerarin. Journal of Dispersion Science and Technology, 2009, 30, 857-864.	2.4	10
155	Synthesis of Polyaniline Hierarchical Structures in a Dilute SDS/HCl Solution: Nanostructure-Covered Rectangular Tubes. Macromolecules, 2009, 42, 1252-1257.	4.8	76
156	Synthesis and Structure of 2-Ferrocenylmethylidenehydrazono-1,3-dithiolane. Journal of Chemical Crystallography, 2008, 38, 109-113.	1,1	3
157	Interactions of Puerarin with Micelles: pK a Shifts and Thermodynamics. Journal of Solution Chemistry, 2008, 37, 107-118.	1,2	9
158	Effects of Triton Xâ€100 and Acyclovir on Human Serum Albumin Structure. Journal of Surfactants and Detergents, 2008, 11, 33-39.	2.1	4
159	Studies on the antioxidant effect of rutin in the microenvironment of cationic micelles. Mikrochimica Acta, 2008, 161, 233-239.	5.0	50
160	The photoisomerization of trans-stilbene in Triton X-100/n-C5H11OH/H2O microemulsions. Colloid and Polymer Science, 2008, 286, 169-174.	2.1	2
161	A novel templateless method to nanofibers of polyaniline derivatives with size control. Journal of Polymer Science Part A, 2008, 46, 740-746.	2.3	35
162	Fabrication of poly(anilineâ€ <i>co</i> â€pyrrole) hollow nanospheres with Triton Xâ€100 micelles as templates. Journal of Polymer Science Part A, 2008, 46, 3563-3572.	2.3	95

#	Article	IF	CITATIONS
163	Micelleâ€toâ€vesicle transition induced by oligonucleotide in SDS/DEAB mixed system with a net negative charge. Journal of Polymer Science Part A, 2008, 46, 7491-7504.	2.3	2
164	Interactions of Ovalbumin with Ionic Surfactants. Chinese Journal of Chemistry, 2008, 26, 1589-1595.	4.9	7
165	Growth of Dendritic Silver Crystals in CTAB/SDBS Mixed-Surfactant Solutions. Crystal Growth and Design, 2008, 8, 2150-2156.	3.0	94
166	Controllable Synthesis of Polyaniline Multidimensional Architectures: From Plate-like Structures to Flower-like Superstructures. Macromolecules, 2008, 41, 6473-6479.	4.8	67
167	Formation and Microstructure Transition of F127/TX-100 Complex. Journal of Physical Chemistry B, 2008, 112, 14566-14577.	2.6	19
168	Fabrication of Novel CdIn ₂ S ₄ Hollow Spheres via a Facile Hydrothermal Process. Journal of Physical Chemistry C, 2008, 112, 10700-10706.	3.1	57
169	Preparation and characterization of a metal-organic three-dimensional framework based on isonicotinate [Pb(INA) ₂] (INA = isonicotinate, NC ₅ H ₄ -4-). Journal of Coordination Chemistry, 2008, 61, 1494-1502.	2.2	10
170	Swelling of Water/Nonionic Surfactant Lamellar Liquid Crystals: A Model. Journal of Dispersion Science and Technology, 2008, 29, 735-739.	2.4	3
171	Spectroscopic Probe–Aluminum(III)–Chrome Azure S Enhanced Determination of Serum Albumin in Microemulsion Medium. Analytical Letters, 2007, 40, 103-112.	1.8	9
172	Interaction between Casein and the Oppositely Charged Surfactant. Biomacromolecules, 2007, 8, 2902-2908.	5.4	55
173	Synthesis of Polymer Hollow Spheres with Holes in Their Surfaces. Chemistry of Materials, 2007, 19, 973-975.	6.7	89
174	Preparation of zinc gluconate nanostructures with different shapes by lamellar liquid crystal template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 85-90.	4.7	12
175	Combined antioxidant effects of rutin and Vitamin C in Triton X-100 micelles. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1580-1586.	2.8	60
176	Fabrication of polymer hollow nanospheres by a swelling–evaporation strategy. Journal of Polymer Science Part A, 2007, 45, 2638-2645.	2.3	24
177	Microstructure and Lubrication Properties of Lamellar Liquid Crystal in Brij30/[Bmim]PF6/H2O System. Tribology Letters, 2007, 28, 123-130.	2.6	29
178	Microenvironment Effect on the Location Distribution of ÂPhenothiazine in Cetyltrimethylammonium Bromide/n-Pentanol/H2O W/O and Bi-continuous Microemulsions. Journal of Solution Chemistry, 2007, 36, 1079-1092.	1.2	3
179	Investigation of PEG 6000/Tween 80/Span 80/H2O niosome microstructure. Colloid and Polymer Science, 2007, 285, 711-713.	2.1	20
180	The self-organization properties of n-dodecylammonium \hat{l}_{\pm} -glutamate/n-C5H11OH/water system. Colloid and Polymer Science, 2007, 285, 1423-1431.	2.1	3

#	Article	IF	CITATIONS
181	Studies on molecular interactions between puerarin and PC liposomes. Science Bulletin, 2007, 52, 2612-2617.	1.7	12
182	Synthesis of rectangular tubes of polyaniline/NiO composites. Journal of Polymer Science Part A, 2006, 44, 4229-4234.	2.3	49
183	Electrochemical polymerization of aniline in the SDS/n-C5H11OH/H2SO4(aq) lyotropic liquid crystal. Journal of Polymer Science Part A, 2006, 44, 2388-2394.	2.3	5
184	The release of cephanone in CTAB/n-C5H11OH/H2O system. Colloid and Polymer Science, 2006, 284, 468-474.	2.1	6
185	Determination of the electrochemical diffusion coefficient of methylene blue in SDS/n-C5H11OH/H2O system by non-probe microelectrode voltammetry. Colloid and Polymer Science, 2006, 284, 788-794.	2.1	4
186	Interactions of hemoglobin with lecithin liposomes. Colloid and Polymer Science, 2006, 284, 1139-1145.	2.1	13
187	Effect of Penicillin G Potassium Salt on the Physicochemical Properties of SDS Aqueous Solution and the Release of the Salt in SDS/n-C5H11OH/H2O System. Chinese Journal of Chemistry, 2006, 24, 22-28.	4.9	0
188	The Interphase Electric Properties of SDS/n 5H11OH/Lâ€Phenylalanine/H2O System. Journal of Dispersion Science and Technology, 2006, 27, 635-642.	2.4	4
189	The preparation of silver sulfide nanoparticles in lamellar liquid crystal and application to lubrication. Materials Research Bulletin, 2005, 40, 575-582.	5.2	20
190	Electrochemical polymerization of aniline in SDS admicelles. Colloid and Polymer Science, 2005, 283, 1063-1069.	2.1	6
191	Synthesis of the composite material of polyaniline/NiO/sodium dodecylbenzenesulfonate in micelles. Colloid and Polymer Science, 2005, 283, 677-680.	2.1	16
192	The effects of anionic and cationic surfactants on the hydrolysis of sodium barbital. Journal of Surfactants and Detergents, 2005, 8, 253-256.	2.1	9
193	Effect of Sodium Barbital on the Physico-chemical Properties of Surfactants with Different Charges. Journal of the Chinese Chemical Society, 2005, 52, 1245-1252.	1.4	9
194	The Inhibition of the Hydrolysis of Cephanone by CTAB/n 5H11OH/H2O Microemulsion. Journal of Dispersion Science and Technology, 2005, 25, 763-769.	2.4	0
195	Tribology Properties of CdS Nanoparticles In Situ Synthesized in Lamellar Liquid Crystal System of Triton Xâ€100/C10H21OH/H2O. Journal of Dispersion Science and Technology, 2005, 26, 477-482.	2.4	7
196	The characterization and property of polystyrene compounding of a-Fe 2 O 3 in the nano-scale. Colloid and Polymer Science, 2004, 282, 656-660.	2.1	18
197	Hydrolysis of cephanone in the micelles with different charges. Colloid and Polymer Science, 2004, 282, 979-984.	2.1	9
198	Hydrotrope and hydrotrope-solubilization action of cephanone in CTAB/n-C5H11OH/H2O system. Colloid and Polymer Science, 2004, 283, 15-23.	2.1	8

#	Article	IF	CITATIONS
199	Catalysis of the electrochemical oxidation of L-cysteine by lyotropic mesophases. Colloid and Polymer Science, 2004, 283, 243-249.	2.1	6
200	Aggregation properties of amphiphilic poly(ethylene oxide)â€poly(propylene oxide)â€poly(ethylene oxide) block copolymer studied by cyclic voltammetry. Journal of Surfactants and Detergents, 2004, 7, 379-385.	2.1	6
201	Phase behavior and structural properties for the triton X-100/n-CnH2n+1COOH/H2O system. Journal of Surfactants and Detergents, 2003, 6, 265-270.	2.1	6
202	Inclusions of methylene blue and phenothiazine by ?-cyclodextrin in sodium dodecyl sulfate micelles. Colloid and Polymer Science, 2003, 281, 777-781.	2.1	7
203	The effect of \hat{l}^2 -cyclodextrin on the properties of cetyltrimethylammonium bromide micelles. Colloid and Polymer Science, 2003, 281, 876-881.	2.1	28
204	Photodegradation of Lecithin Liposomes by Nanoparticulate Titanium Dioxide. Journal of Dispersion Science and Technology, 2003, 24, 841-847.	2.4	0
205	Diffusion Coefficients and Structure Properties in the Pluronic F127/n 4H9OH/H2O System. Journal of Dispersion Science and Technology, 2003, 24, 673-681.	2.4	21
206	Isomerization of Malachite Green in CTAB/n nH2n+1OH/H2O Mixed Micelles. Journal of Dispersion Science and Technology, 2003, 24, 219-228.	2.4	10
207	Phase Behavior and Structural Properties of the Triton XÂâ^'Â100/nÂâ^'ÂCnH2nÂ+Â1OH/H2O System. Journal of Dispersion Science and Technology, 2002, 23, 777-788.	2.4	5
208	Effect of Microemulsion Structures on the Hydrolysis of Acetylsalicylic Acid. Journal of Dispersion Science and Technology, 2001, 22, 541-549.	2.4	8
209	The Phase Behavior and the Structural Properties of Triton X-100/n-C8H17OH/PEG1000aqSystem. Journal of Dispersion Science and Technology, 2001, 22, 443-451.	2.4	8
210	Hydrotropeâ€Solubilization Action of Urea in CTAB/ <i>n CTAB/<i>n Csub>5H₁₁â€OH/H₂O System. Chinese Journal of Chemistry, 2001, 19, 137-142.</i></i>	4.9	1
211	Hydrotrope and Hydrotrope-Solubilization Action of Urea in CTAB/n-C ₅ H ₁₁ OH/H ₂ O System. Journal of Dispersion Science and Technology, 2000, 21, 915-934.	2.4	3
212	POLYGLYCERYL OLEATE SURFACTANTS AND THE STRATUM CORNEUM LIPID. Journal of Dispersion Science and Technology, 2000, 21, 1-18.	2.4	4
213	Diffusion Coefficients and Structure Properties of Triton X-100/ n-C6H13OH/H2O System. Journal of Dispersion Science and Technology, 2000, 21, 935-955.	2.4	8
214	Phase Behavior and Structure of the Sodium Dodecyl Sulfate/Benzyl Alcohol/Water System. Langmuir, 1999, 15, 624-630.	3.5	64
215	The effect ofn-decanol on solubilization of water-in-oil microemulsions and stability of lamellar liquid crystals of alkylphenol ethoxylates. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 15-19.	1.9	9
216	Microemulsion and Lyotropic Liquid Crystal. Journal of Dispersion Science and Technology, 1995, 16, 373-390.	2.4	1

Rong Guo

#	Article	lF	CITATION
217	The Effects of Alcohol with Different Chain Length on the Phase Equilibria of Nonionic Surfactant System. Journal of Dispersion Science and Technology, 1995, 16, 249-261.	2.4	6
218	Fabrication of N-hollow carbon nanospheres@Fe7S8 and their ion-release-based antibacterial properties. Journal of Materials Science, 0, , 1.	3.7	0