Jindan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/122283/publications.pdf Version: 2024-02-01

Ιινσαν Μιι

#	Article	IF	CITATIONS
1	Multifunctional fibrous wound dressings for refractory wound healing. Journal of Polymer Science, 2022, 60, 2191-2212.	2.0	12
2	Melt electrowritten poly(caprolactone) lattices incorporated with silver nanoparticles for directional water transport antibacterial wound dressings. New Journal of Chemistry, 2022, 46, 13565-13574.	1.4	6
3	pH-Sensitive Membranes with Smart Cleaning Capability for Efficient Emulsion Separation and Pollutant Removal. Membranes, 2021, 11, 193.	1.4	8
4	One-Step Fabrication of a Micro/Nanosphere-Coordinated Dual Stimulus-Responsive Nanofibrous Membrane for Intelligent Antifouling and Ultrahigh Permeability of Viscous Water-in-Oil Emulsions. ACS Applied Materials & Interfaces, 2021, 13, 27635-27644.	4.0	22
5	Confined Channels Induced Coalescence Demulsification and Slippery Interfaces Constructed Fouling Resist-Release for Long-Lasting Oil/Water Separation. ACS Applied Materials & Interfaces, 2021, 13, 30224-30234.	4.0	17
6	Synergistic bactericidal nanofibers with photothermal controlled release of antibiotics triggered by near infrared. Materials Letters, 2021, 302, 130423.	1.3	2
7	Superhydrophilic carbonaceous-silver nanofibrous membrane for complex oil/water separation and removal of heavy metal ions, organic dyes and bacteria. Journal of Membrane Science, 2020, 614, 118491.	4.1	79
8	Gram-scale synthesis of splat-shaped Ag–TiO ₂ nanocomposites for enhanced antimicrobial properties. Beilstein Journal of Nanotechnology, 2020, 11, 1119-1125.	1.5	5
9	A pH and hyaluronidase dual-responsive multilayer-based drug delivery system for resisting bacterial infection. Applied Surface Science, 2020, 527, 146806.	3.1	29
10	Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. Journal of Controlled Release, 2020, 321, 463-474.	4.8	77
11	Ag@polyDOPA-b-polysarcosine hybrid nanoparticles with antimicrobial properties from in-situ reduction and NTA polymerization. European Polymer Journal, 2019, 121, 109269.	2.6	9
12	A facile preparation of cotton fabric containing hybrid poly(sodium methacrylate)/silver nanoparticles for oil removal and water disinfection. Textile Reseach Journal, 2019, 89, 5096-5107.	1.1	2
13	Superhydrophilic and mechanical robust PVDF nanofibrous membrane through facile interfacial Span 80 welding for excellent oil/water separation. Applied Surface Science, 2019, 485, 179-187.	3.1	44
14	Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions. Journal of Materials Chemistry A, 2018, 6, 7014-7020.	5.2	132
15	Preparation of Zwitterionic Polymer-Functionalized Cotton Fabrics and the Performance of Anti-Biofouling and Long-Term Biofilm Resistance. Colloids and Interface Science Communications, 2018, 24, 98-104.	2.0	32
16	Polyacrylamide-Modified Polyester Fabric with Easy-Cleaning for Efficient Oil/Water Separation. AATCC Journal of Research, 2018, 5, 1-6.	0.3	7
17	Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions. Journal of Materials Chemistry B, 2018, 6, 7462-7470.	2.9	24
18	The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation. Journal of Membrane Science, 2018, 563, 126-133.	4.1	82

Jindan Wu

#	Article	IF	CITATIONS
19	Underwater oleophobic PTFE membrane for efficient and reusable emulsion separation and the influence of surface wettability and pore size. Separation and Purification Technology, 2017, 189, 32-39.	3.9	32
20	Fabrication of highly underwater oleophobic textiles through poly(vinyl alcohol) crosslinking for oil/water separation: the effect of surface wettability and textile type. Journal of Materials Science, 2017, 52, 1194-1202.	1.7	22
21	Surface Modification of Polyamide 6,6 Fabrics with an Alkaline Protease – Subtilisin. Journal of Engineered Fibers and Fabrics, 2016, 11, 155892501601100.	0.5	7
22	Thermo-responsive poly(<i>N</i> -isopropylacrylamide) grafted polyester textiles with switchable surface wettability. Textile Reseach Journal, 2016, 86, 677-684.	1.1	10
23	Cooperative supramolecular helical assembly of a pyridinium-tailored methyl glycyrrhetate. Soft Matter, 2016, 12, 8979-8982.	1.2	9
24	Effect of the Chain Density and Chain Length on the pH-Responsibility of Poly(acrylic acid) Grafted Cotton. Journal of Nanoscience and Nanotechnology, 2016, 16, 5689-5695.	0.9	4
25	Study of Crystal Violet Hueing Dye Deposition on Fabrics During Home Laundry. Journal of Surfactants and Detergents, 2016, 19, 795-801.	1.0	2
26	Self-cleaning pH/thermo-responsive cotton fabric with smart-control and reusable functions for oil/water separation. RSC Advances, 2016, 6, 24076-24082.	1.7	62
27	Solvent-Directed Assembly of a Pyridinium-Tailored Methyl Oleanolate Amphiphile: Stepwise Growth of Microrods and Nanofibers. Langmuir, 2016, 32, 1685-1692.	1.6	34
28	Study of Different Hueing Dyes Deposition on Fabrics during Home Laundry. Tenside, Surfactants, Detergents, 2016, 53, 561-567.	0.5	0
29	Influence of Nonionic Surfactant on Hydrolysis of Vinyl Sulfone Reactive Dye. Journal of Surfactants and Detergents, 2015, 18, 1127-1135.	1.0	8
30	The fabrication of pH-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation. Materials Letters, 2015, 160, 384-387.	1.3	65
31	Water tuned nano/micro-structures in a redox-responsive supramolecular gel. RSC Advances, 2014, 4, 63539-63543.	1.7	17
32	A density gradient of basic fibroblast growth factor guides directional migration of vascular smooth muscle cells. Colloids and Surfaces B: Biointerfaces, 2014, 117, 290-295.	2.5	17
33	Polyelectrolyte Multilayer Patterns Created by Capillary Force and Their Impact on Cell Migration. Chinese Journal of Chemistry, 2014, 32, 66-72.	2.6	10
34	Tuning the aggregation mode to induce different chiralities in organogels of mono- and bis-triterpenoid derivatives and the preparation of gold nanoparticles for use as a template. New Journal of Chemistry, 2014, 38, 6050-6056.	1.4	20
35	Methyl 1,2‧hift Rearrangement on Câ€ring and Decarboxylation at C28 of Oleanolic Acid Derivatives. Chinese Journal of Chemistry, 2014, 32, 133-136.	2.6	1
36	A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains. Colloids and Surfaces B: Biointerfaces, 2014, 122, 134-142.	2.5	70

Jindan Wu

#	Article	IF	CITATIONS
37	Eco-friendly surface modification on polyester fabrics by esterase treatment. Applied Surface Science, 2014, 295, 150-157.	3.1	37
38	Self-assembly of sodium glycyrrhetinate into a hydrogel: characterisation and properties. RSC Advances, 2013, 3, 24906.	1.7	27
39	Unidirectional migration of single smooth muscle cells under the synergetic effects of gradient swelling cue and parallel groove patterns. Colloids and Surfaces B: Biointerfaces, 2013, 111, 1-6.	2.5	23
40	Directional cell migration through cell–cell interaction on polyelectrolyte multilayers with swelling gradients. Biomaterials, 2013, 34, 975-984.	5.7	62
41	Conjugation of Basic Fibroblast Growth Factor on a Heparin Gradient for Regulating the Migration of Different Types of Cells. Bioconjugate Chemistry, 2013, 24, 1302-1313.	1.8	18
42	Directional migration of vascular smooth muscle cells guided by synergetic surface gradient and chemical pattern of poly(ethylene glycol) brushes. Journal of Bioactive and Compatible Polymers, 2013, 28, 605-620.	0.8	12
43	Organogels of triterpenoid–tripeptide conjugates: encapsulation of dye molecules and basicity increase associated with aggregation. RSC Advances, 2013, 3, 23548.	1.7	28
44	Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene. Beilstein Journal of Organic Chemistry, 2013, 9, 2877-2885.	1.3	24
45	Influences of surface chemistry and swelling of salt-treated polyelectrolyte multilayers on migration of smooth muscle cells. Journal of the Royal Society Interface, 2012, 9, 3455-3468.	1.5	34
46	Modulating the Structure and Properties of Poly(sodium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td (4-styrene Solutions. Langmuir, 2012, 28, 193-199.	esulfonate 1.6)/Poly(diallylo 56
47	Gradient biomaterials and their influences on cell migration. Interface Focus, 2012, 2, 337-355.	1.5	126
48	Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene) Tj ETQq0 0 0 rgB	T Oyerloc	k 10 Tf 50 30
49	Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment. Colloids and Surfaces B: Biointerfaces, 2011, 85, 12-18.	2.5	68
50	Surface-grafted block copolymer brushes with continuous composition gradients of poly(poly(ethylene glycol)-monomethacrylate) and poly(N-isopropylacrylamide). Science China Chemistry, 2011, 54, 334-342.	4.2	16
51	The Design of Biodegradable Microcarriers for Induced Cell Aggregation. Macromolecular Bioscience, 2010, 10, 156-163.	2.1	43
52	Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomaterialia, 2009, 5, 328-337.	4.1	166
53	Covalently immobilized gelatin gradients within three-dimensional porous scaffolds. Science Bulletin, 2009, 54, 3174-3180.	1.7	21
54	Biomimetic modification of chitosan with covalently grafted lactose and blended heparin for improvement of <i>in vitro</i> cellular interaction. Polymers for Advanced Technologies, 2008, 19, 15-23.	1.6	31

#	Article	IF	CITATIONS
55	Microscale control over collagen gradient on poly(l-lactide) membrane surface for manipulating chondrocyte distribution. Colloids and Surfaces B: Biointerfaces, 2008, 67, 210-215.	2.5	39